人教版數(shù)學(xué)必修一知識點總結(jié)
在日常的學(xué)習(xí)中,大家對知識點應(yīng)該都不陌生吧?知識點有時候特指教科書上或考試的知識。那么,都有哪些知識點呢?下面是小編為大家整理的人教版數(shù)學(xué)必修一知識點總結(jié),僅供參考,歡迎大家閱讀。
數(shù)學(xué)必修一知識點總結(jié)1
一、集合有關(guān)概念
1、集合的含義
2、集合的中元素的三個特性:
。1)元素的確定性如:世界上最高的山
。2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
。1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1、Com
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:Nx或N+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x—3>2},{x|x—3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
。2)無限集含有無限個元素的集合
。3)空集不含任何元素的集合
二、集合間的基本關(guān)系
1、“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄?B,B?C,那么A?C
、苋绻鸄?B同時B?A那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4、子集個數(shù):
有n個元素的集合,含有2n個子集,2n—1個真子集,含有2n—1個非空子集,含有2n—1個非空真子集
三、集合的運算
運算類型交集并集補集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集、記作AB(讀作‘A交B’),即AB={x|xA,且xB}、
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集、記作:AB(讀作‘A并B’),即AB={x|xA,或xB})、
數(shù)學(xué)的學(xué)習(xí)方法
1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
2、及時了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。
數(shù)學(xué)一元二次方程知識點
。1)一元二次方程的定義
等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。
注意一下幾點:
①只含有一個未知數(shù);
②未知數(shù)的最高次數(shù)是2;
、凼钦椒匠。
。2)一元二次方程的一般形式
一般形式:
ax2+ bx + c = 0(a ≠0)、
其中,ax2是二次項,a是二次項系數(shù);
bx是一次項,b是一次項系數(shù);c是常數(shù)項。
。3)一元二次方程的根
使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定義是解方程過程中驗根的依據(jù)。
數(shù)學(xué)必修一知識點總結(jié)2
本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應(yīng)用題的基本步驟是:
(1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的.實際意義);
。2)設(shè)量建模;
。3)求解函數(shù)模型;
。4)簡要回答實際問題。
常見考法:
本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。
誤區(qū)提醒:
1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。
2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。
【典型例題】
例1:
。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復(fù)利)。
。2)按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2.25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0.36%·x=100+0.36x,當x=5時,y=101.8,∴5個月后的本息和為101.8元。
例2:
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。
。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
數(shù)學(xué)必修一知識點總結(jié)3
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意啊:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集 Nx或N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
關(guān)于屬于的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.
、僬Z言描述法:例:{不是直角三角形的三角形}
、跀(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.包含關(guān)系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.相等關(guān)系(55,且55,則5=5)
實例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
① 任何一個集合是它本身的子集.AA
、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
、廴绻 AB, BC ,那么 AC
、 如果AB 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.
3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補集
(1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
數(shù)學(xué)必修一知識點總結(jié)4
知識點總結(jié)
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法 (1)描點法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
【人教版數(shù)學(xué)必修一知識點總結(jié)】相關(guān)文章:
新高一數(shù)學(xué)知識點總結(jié)04-24
蘇教版小學(xué)數(shù)學(xué)知識點總結(jié)04-24
小學(xué)生的數(shù)學(xué)知識點總結(jié)04-24
數(shù)學(xué)分析第六章知識點總結(jié)04-24
人教版小學(xué)數(shù)學(xué)教研計劃(通用5篇)04-16
防詐騙知識點總結(jié)04-22
疫情防護知識點總結(jié)04-20