- 相關(guān)推薦
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)
在平凡的學(xué)習(xí)生活中,說(shuō)到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。還在為沒(méi)有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?下面是小編幫大家整理的高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié),歡迎大家分享。
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)1
高考數(shù)學(xué)解答題部分主要考查七大主干知識(shí):
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對(duì)數(shù)學(xué)高考強(qiáng)調(diào)對(duì)基礎(chǔ)知識(shí)與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識(shí),正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬(wàn)變。
對(duì)數(shù)學(xué)思想和方法的考查是對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)與數(shù)學(xué)知識(shí)相結(jié)合。
對(duì)數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問(wèn)題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對(duì)知識(shí)的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學(xué)考試最終落在解題上?季V對(duì)數(shù)學(xué)思維能力、運(yùn)算能力、空間想象能力以及實(shí)踐能力和創(chuàng)新意識(shí)都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習(xí)必須把解題訓(xùn)練落到實(shí)處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識(shí),多進(jìn)行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對(duì)通性通法的認(rèn)識(shí),真正做到解一題,會(huì)一類(lèi)。
在臨近高考的數(shù)學(xué)復(fù)習(xí)中,考生們更應(yīng)該從三個(gè)層面上整體把握,同步推進(jìn)。
1.知識(shí)層面
也就是對(duì)每個(gè)章節(jié)、每個(gè)知識(shí)點(diǎn)的再認(rèn)識(shí)、再記憶、再應(yīng)用。數(shù)學(xué)高考內(nèi)容選修加必修,可歸納為12個(gè)章節(jié),75個(gè)知識(shí)點(diǎn)細(xì)化為160個(gè)小知識(shí)點(diǎn),而這些知識(shí)點(diǎn)又是縱橫交錯(cuò),互相關(guān)聯(lián),是“你中有我,我中有你”的?忌鷤?cè)谇謇磉@些知識(shí)點(diǎn)時(shí),首先是點(diǎn)點(diǎn)必記,不可遺漏。再是建立相關(guān)聯(lián)的網(wǎng)絡(luò),做到取自一點(diǎn),連成一線(xiàn),使之橫豎縱橫都逐個(gè)、逐級(jí)并網(wǎng)連遍,從而牢固記憶、靈活運(yùn)用。
2.能力層面
從知識(shí)點(diǎn)的掌握到解題能力的形成,是綜合,更是飛躍,將知識(shí)點(diǎn)的內(nèi)容轉(zhuǎn)化為高強(qiáng)的數(shù)學(xué)能力,這要通過(guò)大量練習(xí),通過(guò)大腦思維、再思維,從而沉淀而得到數(shù)學(xué)思想的精華,就是數(shù)學(xué)解題能力。我們通常說(shuō)的解題能力、計(jì)算能力、轉(zhuǎn)化問(wèn)題的能力、閱讀理解題意的能力等等,都來(lái)自于千錘百煉的解題之中。
3.創(chuàng)新層面
數(shù)學(xué)解題要?jiǎng)?chuàng)新,首先是思想創(chuàng)新,我們稱(chēng)之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學(xué)的主線(xiàn),我們可以用函數(shù)的思想去分析一切數(shù)學(xué)問(wèn)題,從初等數(shù)學(xué)到高等數(shù)學(xué)、從圖形問(wèn)題到運(yùn)算問(wèn)題、從高散型到連續(xù)型、從指數(shù)與對(duì)數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來(lái)提高題目的難度,用于區(qū)別學(xué)生之間解題能力的差異。我們常常應(yīng)對(duì)參數(shù)的策略點(diǎn)是消去參數(shù),化未知為已知;或討論參數(shù),分類(lèi)找出參數(shù)的含義;或分離參數(shù),將參數(shù)問(wèn)題化成函數(shù)問(wèn)題,使問(wèn)題迎刃而解。這些,我稱(chēng)之為解題創(chuàng)新之舉。
還有一類(lèi)數(shù)學(xué)解題中的創(chuàng)新,是代換,構(gòu)造新函數(shù)新圖形等等,俗稱(chēng)代換法、構(gòu)造法,這里有更大的思維跨越,在解題的某一階段有時(shí)出現(xiàn)山窮水盡,無(wú)計(jì)可施時(shí),用代換與構(gòu)造,就會(huì)使思路豁然開(kāi)朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學(xué)之美。常見(jiàn)的代換有變量代換,三角代換,整體代換;常用的構(gòu)造有構(gòu)造函數(shù)、構(gòu)造圖形、構(gòu)造數(shù)列、構(gòu)造不等式、構(gòu)造相關(guān)模型等等。
總之,數(shù)學(xué)是一門(mén)規(guī)律性強(qiáng)、邏輯結(jié)構(gòu)嚴(yán)密的學(xué)科,它有規(guī)律、有模型、有式子、有圖形,只要我們掌握了它的規(guī)律、看清了模型、了解了式子、記住了圖形,數(shù)學(xué)就會(huì)變成一門(mén)簡(jiǎn)單而有趣的科學(xué)。這種戰(zhàn)略上的藐視與戰(zhàn)術(shù)上的重視,將會(huì)使考生們超常發(fā)揮,取得優(yōu)異的成績(jī)。
高等數(shù)學(xué)學(xué)習(xí)方法
養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專(zhuān)心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法
中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的'數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類(lèi)討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類(lèi)比,比較與分類(lèi),分析與綜合,歸納與演繹,一般與特殊,有限與無(wú)限,抽象與概括等。
高等數(shù)學(xué)學(xué)習(xí)技巧
1.先看筆記后做作業(yè)。
有的同學(xué)感到,老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對(duì)教師所說(shuō)的理解沒(méi)有達(dá)到教師要求的水平。
因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒(méi)有剛剛講過(guò)的練習(xí)類(lèi)型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長(zhǎng)一段時(shí)間內(nèi),會(huì)造成很大的損失。
2.做題之后加強(qiáng)反思。
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問(wèn)題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問(wèn)題,并總結(jié)我們自己的收獲。
要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問(wèn)題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話(huà)說(shuō): 有錢(qián)難買(mǎi)回頭看 。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過(guò)程中一個(gè)非常重要的環(huán)節(jié)。
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)2
第一章:函數(shù)與極限
1.理解函數(shù)的概念,掌握函數(shù)的表示方法。
2.會(huì)建立簡(jiǎn)單應(yīng)用問(wèn)題中的函數(shù)關(guān)系式。
3.了解函數(shù)的奇偶性、單調(diào)性、周期性、和有界性。
4.掌握基本初等函數(shù)的性質(zhì)及圖形。
5.理解復(fù)合函數(shù)及分段函數(shù)的有關(guān)概念,了解反函數(shù)及隱函數(shù)的概念。
6.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù))會(huì)判別函數(shù)間斷點(diǎn)的類(lèi)型。
7.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及極限存在與左右極限間的關(guān)系。
8.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。
9.掌握極限性質(zhì)及四則運(yùn)算法則。
10.理解無(wú)窮孝無(wú)窮大的概念,掌握無(wú)窮小的比較方法,會(huì)用等價(jià)無(wú)窮小求極限。
第二章:導(dǎo)數(shù)與微分
1.理解導(dǎo)數(shù)與微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線(xiàn)的`切線(xiàn)方程和法線(xiàn)方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描寫(xiě)一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握初等函數(shù)的求導(dǎo)公式,了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求初等函數(shù)的微分。
3.會(huì)求隱函數(shù)和參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。
4.會(huì)求分段函數(shù)的導(dǎo)數(shù),了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。
第三章:微分中值定理與導(dǎo)數(shù)的應(yīng)用
1.熟練運(yùn)用微分中值定理證明簡(jiǎn)單命題。
2.熟練運(yùn)用羅比達(dá)法則和泰勒公式求極限和證明命題。
3.了解函數(shù)圖形的作圖步驟。了解方程求近似解的兩種方法:二分法、切線(xiàn)法。
4.會(huì)求函數(shù)單調(diào)區(qū)間、凸凹區(qū)間、極值、拐點(diǎn)以及漸進(jìn)線(xiàn)、曲率。
第四章:不定積分
1.理解原函數(shù)和不定積分的概念,掌握不定積分的基本公式和性質(zhì)。
2.會(huì)求有理函數(shù)、三角函數(shù)、有理式和簡(jiǎn)單無(wú)理函數(shù)的不定積分
3.掌握不定積分的分步積分法。
4.掌握不定積分的換元積分法。
第五章:定積分
1.理解定積分的概念,掌握定積分的性質(zhì)及定積分中值定理。
2.掌握定積分的換元積分法與分步積分法。
3.了解廣義積分的概念,并會(huì)計(jì)算廣義積分。
4.掌握反常積分的運(yùn)算。
5.理解變上限定積分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。
第六章:定積分的應(yīng)用
1.掌握用定積分計(jì)算一些物理量(功、引力、壓力)。
2.掌握用定積分表達(dá)和計(jì)算一些幾何量(平面圖形的面積、平面曲線(xiàn)的弧長(zhǎng)、旋轉(zhuǎn)體的體積和側(cè)面積、平行截面面積為已知的立體體積)及函數(shù)的平均值。
第七章:微分方程
1.了解微分方程及其解、階、通解、初始條件和特解等概念。
2.會(huì)解奇次微分方程,會(huì)用簡(jiǎn)單變量代換解某些微分方程。
3.掌握可分離變量的微分方程,會(huì)用簡(jiǎn)單變量代換 解某些微分方程。
4.掌握二階常系數(shù)齊次微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次微分方程。
5.掌握一階線(xiàn)性微分方程的解法,會(huì)解伯努利方程。
6.會(huì)用降階法解下列微分方程y=f(x,y)。
7.會(huì)解自由項(xiàng)為多項(xiàng)式,指數(shù)函數(shù),正弦函數(shù),余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線(xiàn)性微分方程。
8.會(huì)解歐拉方程。
第八章:空間解析幾何與向量代數(shù)
1.理解空間直線(xiàn)坐標(biāo)系,理解向量的概念及其表示。
2.掌握向量的數(shù)量、積向量積、混合積并能用坐標(biāo)表達(dá)式進(jìn)行運(yùn)算,了解兩個(gè)向量垂直、平行的條件。
3.掌握向量的線(xiàn)性運(yùn)算,掌握單位向量、方向角與方向余弦,掌握向量的坐標(biāo)表達(dá)式掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算方法。
4.掌握直線(xiàn)方程的求法,會(huì)利用平面、直線(xiàn)的相互關(guān)系解決有關(guān)問(wèn)題,會(huì)求點(diǎn)到直線(xiàn)及點(diǎn)到平面的距離。
5.掌握平面方程及其求法,會(huì)求平面與平面的夾角,并會(huì)用平面的相互關(guān)系(平行相交垂直)解決有關(guān)問(wèn)題。
6.理解曲面方程的概念,了解二次曲面方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線(xiàn)平行于坐標(biāo)軸的柱面方程。
7.了解空間曲線(xiàn)的概念,了解空間曲線(xiàn)的參數(shù)方程和一般方程,了解空間曲線(xiàn)在坐標(biāo)平面上的投影,并會(huì)求其方程。
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)3
知識(shí)點(diǎn)一:函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類(lèi)型的判斷、無(wú)窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無(wú)實(shí)根。
知識(shí)點(diǎn)二:一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線(xiàn)漸近線(xiàn)的求法。
知識(shí)點(diǎn)三:一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
知識(shí)點(diǎn)四:向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線(xiàn)方程及其求法、平面與平面、平面與直線(xiàn)、直線(xiàn)與直線(xiàn)之間的夾角,并會(huì)利用平面、直線(xiàn)的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問(wèn)題等,該部分一般不單獨(dú)考查,主要作為曲線(xiàn)積分和曲面積分的基礎(chǔ)。
知識(shí)點(diǎn)五:多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問(wèn)題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無(wú)條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線(xiàn)的切線(xiàn)與法平面、曲面的切平面與法線(xiàn)。
知識(shí)點(diǎn)六:多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類(lèi)曲線(xiàn)積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
知識(shí)點(diǎn)七:無(wú)窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開(kāi)問(wèn)題。
知識(shí)點(diǎn)八:常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線(xiàn)性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的'基本概念與一介常系數(shù)線(xiàn)形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
高等數(shù)學(xué)學(xué)習(xí)方法
規(guī)律記憶:即根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來(lái)進(jìn)行記憶。比如,識(shí)記長(zhǎng)度單位、面積單位、體積單位的化法和聚法;ê途鄯ㄊ腔ツ媛(lián)系,即高級(jí)單位的數(shù)值率=低級(jí)單位的數(shù)值,低級(jí)單位的數(shù)值÷進(jìn)率=高級(jí)單位的數(shù)值。掌握了這兩條規(guī)律,化聚問(wèn)題就迎刃而解了。規(guī)律記憶,需要學(xué)生開(kāi)動(dòng)腦筋對(duì)所學(xué)的有關(guān)材料進(jìn)行加工和組織,因而記憶牢固。
列表記憶:就是把某些容易混淆的識(shí)記材料列成表格,達(dá)到記憶之目的。這種方法具有明顯性、直觀性和對(duì)比性。比如,要識(shí)記質(zhì)數(shù)、質(zhì)因數(shù)、互質(zhì)數(shù)這三個(gè)概念的區(qū)別,就可列成表來(lái)幫助學(xué)生記憶。
高等數(shù)學(xué)學(xué)習(xí)技巧
養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專(zhuān)心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法,中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類(lèi)討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類(lèi)比,比較與分類(lèi),分析與綜合,歸納與演繹,一般與特殊,有限與無(wú)限,抽象與概括等。
逐步形成“以我為主”的學(xué)習(xí)模式,數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書(shū)不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。
要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)4
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5) 實(shí)
例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
、偃魏我粋(gè)集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類(lèi)型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的.交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
如何養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。
在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平 dW 時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
數(shù)學(xué)性質(zhì)
數(shù)學(xué)性質(zhì)是數(shù)學(xué)表觀和內(nèi)在所具有的特征,一種事物區(qū)別于其他事物的屬性。如:平行四邊形的性質(zhì):對(duì)邊平行,對(duì)邊相等,對(duì)角線(xiàn)互相平分,中心對(duì)稱(chēng)圖形。
高等數(shù)學(xué)知識(shí)點(diǎn)
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)5
一、歷年微積分考試命題特點(diǎn)
微積分復(fù)習(xí)的重點(diǎn)根據(jù)考試的趨勢(shì)來(lái)看,難度特別是怪題不多,就是綜合性串題。以往考試選擇填空題比較少,而今年變大了。微積分一共74分,填空、選擇占32分。第一是要把基本概念、基本內(nèi)容有一個(gè)系統(tǒng)的復(fù)習(xí),選擇填空題很重要。幾大運(yùn)算,一個(gè)是求極限運(yùn)算,還有就是求導(dǎo)數(shù),導(dǎo)數(shù)運(yùn)算占了很大的比重,這是一個(gè)很重要的內(nèi)容。當(dāng)然,還有積分,基礎(chǔ)還是要把基本積分類(lèi)型基礎(chǔ)搞清楚,定積分就是對(duì)稱(chēng)性應(yīng)用。二重積分就是要分成兩個(gè)累次積分。三大運(yùn)算這是我們的基礎(chǔ),應(yīng)該會(huì)算,算的概念比如說(shuō)極限概念、導(dǎo)數(shù)概念、積分概念。
二、微積分中三大主要函數(shù)
微積分處理的對(duì)象有三大主要函數(shù),第一是初等函數(shù),這是最基礎(chǔ)的東西。在初等函數(shù)的基礎(chǔ)上對(duì)分段函數(shù),在微積分的概念里都有分段函數(shù),處理的一般方法應(yīng)該掌握。還有就是研究生考試最常見(jiàn)的是變限積分函數(shù)。這是我們經(jīng)常遇到的三大基本函數(shù)。
三、微積分復(fù)習(xí)方法
微積分復(fù)習(xí)內(nèi)容很多,題型也多,靈活度也大。怎么辦呢?這其中有一個(gè)調(diào)理辦法,首先要看看輔導(dǎo)書(shū)、聽(tīng)輔導(dǎo)課,老師給你提供幫助,會(huì)給你一個(gè)比較系統(tǒng)的總結(jié)。老師總結(jié)的東西,比如說(shuō)我在考研教育網(wǎng)輔導(dǎo)課程中總結(jié)了很多的點(diǎn),每一個(gè)點(diǎn)要掌握重點(diǎn),要舉一反三搞清楚。從具體大的題目來(lái)講,基本運(yùn)算是考試的重要內(nèi)容。應(yīng)用方面,無(wú)非是在工科強(qiáng)調(diào)物理應(yīng)用,比如說(shuō)旋轉(zhuǎn)體的面積、體積等等。在經(jīng)濟(jì)里面的經(jīng)濟(jì)運(yùn)用,彈性概念、邊際是經(jīng)濟(jì)學(xué)的重要概念,包括經(jīng)濟(jì)的函數(shù)。還有一個(gè)更應(yīng)該掌握的,比如集合、旋轉(zhuǎn)體積應(yīng)用面等等,大的題目都是在經(jīng)濟(jì)基礎(chǔ)上延伸出的問(wèn)題,只有數(shù)學(xué)化了之后,才能處理數(shù)學(xué)模型。
還有中值定理,還有微分學(xué)的應(yīng)用,比如說(shuō)單調(diào)性、凹凸性的討論、不等式證明等等。應(yīng)用部分包括證明推斷的內(nèi)容。
簡(jiǎn)單概括一下就是三個(gè)基本函數(shù)要搞清楚,三大運(yùn)算的基礎(chǔ)要搞熟,概念點(diǎn)要看看參考書(shū)地都有系統(tǒng)的總結(jié),哪些點(diǎn)在此就不一一列了。計(jì)算題、應(yīng)用題、函數(shù)微分學(xué)延伸出的證明題都要搞熟。
高等數(shù)學(xué)考點(diǎn)匯總
一、一元函數(shù)積分學(xué)
(一)不定積分
1.知識(shí)范圍
(1)不定積分
原函數(shù)與不定積分的定義原函數(shù)存在定理不定積分的性質(zhì)
(2)基本積分公式
(3)換元積分法
第一換元法(湊微分法)第二換元法
(4)分部積分法
(5)一些簡(jiǎn)單有理函數(shù)的積分
2.要求
(1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理。
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡(jiǎn)單的根式代換)。
(4)熟練掌握不定積分的分部積分法。
(5)會(huì)求簡(jiǎn)單有理函數(shù)的不定積分。
(二)定積分
1.知識(shí)范圍
(1)定積分的概念
定積分的定義及其幾何意義可積條件
(2)定積分的性質(zhì)
(3)定積分的計(jì)算
變上限積分牛頓—萊布尼茨(Newton-Leibniz)公式換元積分法分部積分法
(4)無(wú)窮區(qū)間的廣義積分
(5)定積分的應(yīng)用
平面圖形的面積旋轉(zhuǎn)體體積物體沿直線(xiàn)運(yùn)動(dòng)時(shí)變力所作的功
2.要求
(1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。
(2)掌握定積分的基本性質(zhì)。
(3)理解變上限積分是變上限的函數(shù),掌握對(duì)變上限定積分求導(dǎo)數(shù)的方法。
(4)熟練掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無(wú)窮區(qū)間的廣義積分的概念,掌握其計(jì)算方法。
(7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的`面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。
會(huì)用定積分求沿直線(xiàn)運(yùn)動(dòng)時(shí)變力所作的功。
二、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.知識(shí)范圍
(1)向量的概念
向量的定義向量的模單位向量向量在坐標(biāo)軸上的投影向量的坐標(biāo)表示法向量的方向余弦
(2)向量的線(xiàn)性運(yùn)算
向量的加法向量的減法向量的數(shù)乘
(3)向量的數(shù)量積
二向量的夾角二向量垂直的充分必要條件
(4)二向量的向量積二向量平行的充分必要條件
2.要求
(1)理解向量的概念,掌握向量的坐標(biāo)表示法,會(huì)求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。
(2)熟練掌握向量的線(xiàn)性運(yùn)算、向量的數(shù)量積與向量積的計(jì)算方法。
(3)熟練掌握二向量平行、垂直的充分必要條件。
(二)平面與直線(xiàn)
1.知識(shí)范圍
(1)常見(jiàn)的平面方程
點(diǎn)法式方程一般式方程
(2)兩平面的位置關(guān)系(平行、垂直和斜交)
(3)點(diǎn)到平面的距離
(4)空間直線(xiàn)方程
標(biāo)準(zhǔn)式方程(又稱(chēng)對(duì)稱(chēng)式方程或點(diǎn)向式方程)一般式方程參數(shù)式方程
(5)兩直線(xiàn)的位置關(guān)系(平行、垂直)
(6)直線(xiàn)與平面的位置關(guān)系(平行、垂直和直線(xiàn)在平面上)
2.要求
(1)會(huì)求平面的點(diǎn)法式方程、一般式方程。會(huì)判定兩平面的垂直、平行。會(huì)求兩平面間的夾角。
(2)會(huì)求點(diǎn)到平面的距離。
(3)了解直線(xiàn)的一般式方程,會(huì)求直線(xiàn)的標(biāo)準(zhǔn)式方程、參數(shù)式方程。會(huì)判定兩直線(xiàn)平行、垂直。
(4)會(huì)判定直線(xiàn)與平面間的關(guān)系(垂直、平行、直線(xiàn)在平面上)。
(三)簡(jiǎn)單的二次曲面
1.知識(shí)范圍
球面母線(xiàn)平行于坐標(biāo)軸的柱面旋轉(zhuǎn)拋物面圓錐面橢球面
2.要求
了解球面、母線(xiàn)平行于坐標(biāo)軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。
三、多元函數(shù)微積分學(xué)
(一)多元函數(shù)微分學(xué)
1.知識(shí)范圍
(1)多元函數(shù)
多元函數(shù)的定義二元函數(shù)的幾何意義二元函數(shù)極限與連續(xù)的概念
(2)偏導(dǎo)數(shù)與全微分
偏導(dǎo)數(shù)全微分二階偏導(dǎo)數(shù)
(3)復(fù)合函數(shù)的偏導(dǎo)數(shù)
(4)隱函數(shù)的偏導(dǎo)數(shù)
(5)二元函數(shù)的無(wú)條件極值與條件極值
2.要求
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會(huì)求二次函數(shù)的表達(dá)式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對(duì)計(jì)算不作要求)。
(2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法。
(4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。
(5)會(huì)求二元函數(shù)的全微分。
(6)掌握由方程所確定的隱函數(shù)的一階偏導(dǎo)數(shù)的計(jì)算方法。
(7)會(huì)求二元函數(shù)的無(wú)條件極值。會(huì)用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。
(二)二重積分
1.知識(shí)范圍
(1)二重積分的概念
二重積分的定義二重積分的幾何意義
(2)二重積分的性質(zhì)
(3)二重積分的計(jì)算
(4)二重積分的應(yīng)用
2.要求
(1)理解二重積分的概念及其性質(zhì)。
(2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法。
(3)會(huì)用二重積分解決簡(jiǎn)單的應(yīng)用問(wèn)題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。
四、無(wú)窮級(jí)數(shù)
(一)數(shù)項(xiàng)級(jí)數(shù)
1.知識(shí)范圍
(1)數(shù)項(xiàng)級(jí)數(shù)
數(shù)項(xiàng)級(jí)數(shù)的概念級(jí)數(shù)的收斂與發(fā)散級(jí)數(shù)的基本性質(zhì)級(jí)數(shù)收斂的必要條件
(2)正項(xiàng)級(jí)數(shù)收斂性的判別法
比較判別法比值判別法
(3)任意項(xiàng)級(jí)數(shù)交錯(cuò)級(jí)數(shù)絕對(duì)收斂條件收斂萊布尼茨判別法
2.要求
(1)理解級(jí)數(shù)收斂、發(fā)散的概念。掌握級(jí)數(shù)收斂的必要條件,了解級(jí)數(shù)的基本性質(zhì)。
(2)掌握正項(xiàng)級(jí)數(shù)的比值判別法。會(huì)用正項(xiàng)級(jí)數(shù)的比較判別法。
(3)掌握幾何級(jí)數(shù)、調(diào)和級(jí)數(shù)與級(jí)數(shù)的收斂性。
(4)了解級(jí)數(shù)絕對(duì)收斂與條件收斂的概念,會(huì)使用萊布尼茨判別法。
(二)冪級(jí)數(shù)
1.知識(shí)范圍
(1)冪級(jí)數(shù)的概念
收斂半徑收斂區(qū)間
(2)冪級(jí)數(shù)的基本性質(zhì)
(3)將簡(jiǎn)單的初等函數(shù)展開(kāi)為冪級(jí)數(shù)
2.要求
(1)了解冪級(jí)數(shù)的概念。
(2)了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)求導(dǎo)與逐項(xiàng)積分)。
(3)掌握求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點(diǎn))的方法。
(4)會(huì)運(yùn)用麥克勞林(Maclaurin)公式,將一些簡(jiǎn)單的初等函數(shù)展開(kāi)為冪級(jí)數(shù)。
五、常微分方程
(一)一階微分方程
1.知識(shí)范圍
(1)微分方程的概念
微分方程的定義階解通解初始條件特解
(2)可分離變量的方程
(3)一階線(xiàn)性方程
2.要求
(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。
(2)掌握可分離變量方程的解法。
(3)掌握一階線(xiàn)性方程的解法。
(二)可降價(jià)方程
1.知識(shí)范圍
(1)型方程
(2)型方程
2.要求
(1)會(huì)用降階法解型方程。
(2)會(huì)用降階法解型方程。
(三)二階線(xiàn)性微分方程
1.知識(shí)范圍
(1)二階線(xiàn)性微分方程解的結(jié)構(gòu)
(2)二階常系數(shù)齊次線(xiàn)性微分方程
(3)二階常系數(shù)非齊次線(xiàn)性微分方程
2.要求
(1)了解二階線(xiàn)性微分方程解的結(jié)構(gòu)。
(2)掌握二階常系數(shù)齊次線(xiàn)性微分方程的解法。
(3)掌握二階常系數(shù)非齊次線(xiàn)性微分方程的解法。
考試形式及試卷結(jié)構(gòu)
試卷總分:150分
考試時(shí)間:150分鐘
考試方式:閉卷,筆試
試卷內(nèi)容比例:
函數(shù)、極限和連續(xù)約15%
一元函數(shù)微分學(xué)約25%
一元函數(shù)積分學(xué)約20%
多元函數(shù)微積分(含向量代數(shù)與空間解析幾何)約20%
無(wú)窮級(jí)數(shù)約10%
常微分方程約10%
試卷題型比例:
選擇題約15%
填空題約25%
解答題約60%
試題難易比例:
容易題約30%
中等難度題約50%
較難題約20%
【高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高等數(shù)學(xué)大二知識(shí)點(diǎn)總結(jié)07-23
高等數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)07-17
高等數(shù)學(xué)知識(shí)點(diǎn)10-24
大學(xué)高等數(shù)學(xué)二知識(shí)點(diǎn)總結(jié)08-17
高職高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-03