亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

圓柱的體積教案

時間:2023-04-01 13:53:06 教案 我要投稿

圓柱的體積教案

  作為一位杰出的教職工,通常會被要求編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。優(yōu)秀的教案都具備一些什么特點呢?下面是小編收集整理的圓柱的體積教案,僅供參考,希望能夠幫助到大家。

圓柱的體積教案

圓柱的體積教案1

  教學內(nèi)容:

  人教版小學數(shù)學六年級下冊《圓柱的體積》P25-26。

  教學目標:

  1.經(jīng)歷探究和推導圓柱的體積公式的過程。

  2.知道并能記住圓柱的體積公式,并能運用公式進行計算。

  3.在自主探究圓柱的體積公式的過程中,體驗、感悟數(shù)學規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應關(guān)系。發(fā)展學生的觀察能力和分析、綜合、歸納推理能力。

  4.激發(fā)學生的學習興趣,讓學生體驗成功的快樂。

  5.培養(yǎng)學生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。

  教學重點:掌握和運用圓柱體積計算公式

  教學難點:圓柱體積公式的推導過程

  教具學具準備:教學課件、圓柱體。

  教學過程:

  一、復習導入

  1.同學們想一想,我們已經(jīng)學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?

  2.回憶一下圓面積的計算公式是如何推導出來的?

  (結(jié)合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當于圓周長的一半,可以用πR表示,長方形的寬就當于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導出圓的面積公式是S=πR。

  3.課件出示一個圓柱體

  我們把圓轉(zhuǎn)化成了近似的長方形,同學們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?

  二、探索體驗

  1.學生猜想可以把圓柱轉(zhuǎn)化成什么圖形?

  2.課件演示:把圓柱體轉(zhuǎn)化成長方體

  ①是怎樣拼成的?

 、谟^察是不是標準的長方體?

  ③演示32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。

  3.借鑒圓的面積公式的推導過程試著推導圓柱的體積公式。

  課件出示要求:

 、倨闯傻拈L方體與原來的圓柱體比較什么變了?什么沒變?

  ②推導出圓柱體的.體積公式。

  學生結(jié)合老師提出的問題自己試著推導。

  4.交流展示

  小組討論,交流匯報。

  生匯報師結(jié)合講解板書。

  圓柱體積=底面積×高

  ‖‖‖

  長方體體積=底面積×高

  用字母公式怎樣表示呢?v、s、h各表示什么?

  5.知道哪些條件可以求出圓柱的體積?

  6.計算下面圓柱的體積。

 、俚酌娣e24平方厘米,高12厘米

 、诘酌姘霃2厘米,高5厘米

  ③直徑10厘米,高4厘米

 、苤荛L18.84厘米,高12厘米

  三、課堂檢測

  1.判斷

  ①圓柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。()

 、趫A柱的底面積擴大3倍,體積也擴大3倍。()

  ③一個長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。()

 、軋A柱體的底面直徑和高可以相等。()

 、輧蓚圓柱體的底面積相等,體積也一定相等。()

 、抟粋圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。()

  2.聯(lián)系生活實際解決實際問題。

  下面的這個杯子能不能裝下這袋奶?

 。ū拥臄(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)

  學生獨立思考回答后自己做在練習本上。

  3.一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?

  4.生活中的數(shù)學

  一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。

  ①覆蓋在這個大棚上的塑料薄膜約有多少平方米?

 、诖笈飪(nèi)的空間大約有多大?

  獨立思考后小組討論,兩生板演。

  四、全課總結(jié)

  這節(jié)課你有什么收獲?

  五、課后延伸

  如果要測量圓柱形柱子的體積,測量哪些數(shù)據(jù)比較方便?試一試吧?

  六、板書設(shè)計

  圓柱體積=底面積×高

  長方體體積=底面積×高

圓柱的體積教案2

  教學目標:

  1、理解圓柱體積公式的推導過程。

  2、能夠初步地學會運用體積公式解決簡單的實際問題。

  3、進一步提高學生解決問題的能力。

  教學重、難點:

  1、理解圓柱體積公式的推導過程。

  2、能夠初步地學會運用體積公式解決簡單的實際問題。

  3、理解圓柱體積公式的推導過程。

  教學準備:圓柱切割組合模具、小黑板。

  教學過程:

  一、創(chuàng)設(shè)情境,生成問題

  1、什么是體積?( 物體所占空間的大小叫做物體的體積。)

  2、長方體的體積該怎樣計算?歸納到底面積乘高上來。

  3、圓的面積怎樣計算?

  二、探索交流,解決問題

  1、計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學過的長方形進行計算的,能不能把圓柱轉(zhuǎn)化成我們學過的立體 圖形來計算它的體積?

 。▎l(fā)學生思考。)

  2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。

  3、思考:

 。1)圓柱切開后可以拼成一個什么形體?(長方體)

 。2)通過實驗你發(fā)現(xiàn)了什么?

  小組討論:實驗前后,什么變了?什么沒變?

  討論后,整理出來,再進行匯報。

 。ㄆ闯傻慕崎L方體體積大小沒變,形狀變了,拼成的近似長方

  體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)

  4、推導圓柱體積公式

  小組討論:怎樣計算圓柱的體積?

  學生匯報討論結(jié)果。

  長方體的.體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。

  師:圓柱的體積怎樣計算?用字母公式,怎樣表示?

  板書: V=Sh

  5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?

  三、鞏固應用練習。

  1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,

  這個水桶的容積是多少升?

  說明:求水桶的容積,就是求水桶的體積。想一想先求什么?

  2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?

  先求底面半徑再求底面積,最后求體積。

  已知底面周長對解決問題有什么幫助嗎?必須先求出什么? 四:課堂小結(jié):

  通過這節(jié)課你學會了哪些知識,有什么收獲?五:課后作業(yè):

  教材第9頁,練一練第1、3、4、題

圓柱的體積教案3

  一、教學內(nèi)容:人教版教材六年級下冊19——20頁例5例6及相關(guān)的練習題。

  二、教學目標:

  1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。

  2、經(jīng)歷“類比猜想——驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積。并會解決一些簡單的實際問題。

  3、注意滲透類比、轉(zhuǎn)化思想。

  三、教學重點:理解、掌握圓柱體積計算的公式,能運用公式正確地計算圓柱的體積。

  四、教學難點:推導圓柱的體積計算公式。

  五、教法要素:

  1、已有的知識和經(jīng)驗:體積、體積單位,學習長方體正方體的體積公式的經(jīng)驗。

  2、原型:圓柱模型。

  3、探究的問題:

  (1)圓柱的體積和什么有關(guān)?圓柱能否轉(zhuǎn)化成已學過的立體圖形來計算體積?

 。2)把圓柱拼成一個近似的長方體后,長方體的長、寬、高是圓柱的哪個

  部分?

 。3)怎樣計算圓柱的體積?

  六、教學過程:

  (一)喚起與生成。

  1、什么叫物體的體積?我們學過哪些立體圖形的體積計算?

  2、長方體和正方體的體積怎樣計算?它們可以用一個公式表示出來嗎?

  切入教學:怎樣計算圓柱的體積?圓柱的體積計算會和什么有關(guān)?

  (二)探究與解決。

  探究:圓柱的體積

  1、 提出問題,啟發(fā)思考:如何計算圓柱的體積?

  2、 類比猜測,提出假設(shè):結(jié)合長方體和正方體體積計算的知識,即長方

  體和正方體的體積都等于底面積×高,據(jù)此分析并猜測圓柱的體積與誰有關(guān),有什么關(guān)系;提出假設(shè),圓柱的體積可能等于底面積×高。

  3、 轉(zhuǎn)化物體,分析推理:

  怎樣來驗證我們的猜想?我們在學圓的面積時是把圓平均分成若干份,然后拼成一個近似的長方形,推導出圓的面積計算公式。我們能不能也把圓柱轉(zhuǎn)化為我們學過的立體圖形呢?應該怎樣轉(zhuǎn)化?結(jié)合圓的面積計算小組討論。學生匯報交流。

 。贸銎骄趾玫膱A柱模型,圓柱的底面用一種顏色,圓柱的側(cè)面用另一種顏色,以便學生觀察。)現(xiàn)在利用這個圓柱模型小組合作把它轉(zhuǎn)化為我們學過的立體圖形。學生在小組合作后匯報交流。

  4、全班交流,公式歸納:

  交流時,要學生說明拼成的長方體與原來的圓柱有什么關(guān)系?圓柱的底面積和拼成的長方體的底面積有什么關(guān)系?拼成的長方體的高和圓柱的高有什么關(guān)系?引導學生推導出圓柱的體積計算方法。圓柱的體積=底面積×高。(在這一過程中,使學生認識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉(zhuǎn)化為長方體的`體積,分的份數(shù)越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計算公式,并用字母表示。

  回想一下,剛才我們是怎樣推導出圓柱的體積計算公式的?

  5、舉一反三,應用規(guī)律:

 。1)你能用這個公式解決實際問題嗎?20頁做一做,學生獨立完成,全班訂正。

  如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導學生推導出V=∏r2h

 。2)教學例6

  學生審題之后,引導學生思考:解決這個問題就是要計算什么?然后指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計算方法跟圓柱體積的計算方法一樣,再讓學生獨立解決。反饋時,要引導學生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。

  (三)訓練與強化。

  1、基本練習。

  練習三第1題,學生獨立完成,這兩個都可以直接用V=sh來計算。全班訂正,注意培養(yǎng)學生良好的計算習慣。

  2、變式練習。

  第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學生獨立完成,在交流時,注意計算方法的指導。

  第3題。求裝多少水,實際是求這個水桶的容積。學生獨立完成,全班交流。水是液體,單位應用毫升或升。

  3、綜合練習。

  第5題。這題中知道了圓柱的體積和底面積求高,引導學生推出h=V÷s,如果有困難,也可列方程解答。學生獨立完成,有困難的小組交流。

  4、提高性練習。22頁第10題,學生先小組討論,再全班交流。

 。ㄋ模┛偨Y(jié)與提高。

  這節(jié)課我們是怎樣推導出圓柱體積的計算方法的?圓柱和長方體、正方體在形體上有什么相同的地方?像這樣上下兩個底面一樣,粗細不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計算。出示幾個直柱體(例:三棱柱、鋼管等),讓學生計算出他們的體積。

圓柱的體積教案4

  教學內(nèi)容:

  教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習二第1~5題。

  教學要求:

  1.使學生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件正確地求出圓柱的體積。

  2.培養(yǎng)學生初步的空間觀念和思維能力;讓學生認識轉(zhuǎn)化的思考方法。

  教具準備:

  圓柱體積演示教具。

  教學重點:

  理解和掌握圓柱的體積計算公式。

  教學難點:

  圓柱體積計算公式的推導。

  教學過程:

  一、鋪墊孕伏:

  1.求下面各圓的面積(回答)。

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  要求說出解題思路。

  2.想一想:學習計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的.面積。

  3.提問:什么叫體積?常用的體積單位有哪些?

  4.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積高)

  二、自主研究:

  1.根據(jù)學過的體積概念,說說什么是圓柱的體積。(板書課題)

  2.怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為已學過的立體圖形來計算呢,現(xiàn)在我們大家一起來討論。

  3.公式推導。(可分小組進行)

  (1)請同學指出圓柱體的底面積和高。

  (2)回顧圓面積公式的推導。(切拼轉(zhuǎn)化)

  (3)探索求圓柱體積的公式。

  根據(jù)圓面積剪、拼轉(zhuǎn)化成長方形的思路,我們也可以運用切拼轉(zhuǎn)化的方法把圓柱體變成學過的幾何形體來推導出圓柱的體積計算公式。你能想出怎樣切、拼轉(zhuǎn)化嗎?請同學們仔細觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關(guān)系。教師演示圓柱體積公式推導演示教具:把圓柱的底面分成許多相等的扇形(數(shù)量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體?梢韵胂,分成的扇形越多,拼成的立體圖形就越接近于長方體。

  (4)討論并得出結(jié)果。

  你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的體。這個長方體的底面積與圓柱體的底面積,這個長方體的高與圓柱體的高。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是:。(板書:圓柱的體積=底面積高)用字母表示:。(板書:V=Sh)

  (5)小結(jié)。

  圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?

  4.教學例1。

  出示例1,審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位)

  0.9米=90厘米2490=2160(立方厘米)

  5.做練習二第1題。

  讓學生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?

  6.教學試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學生做在練習本上。評講試一試小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。

  7.教學例2。

  出示例2,審題。小組討論計算方法,然后學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位,結(jié)果保留整數(shù)。)

  三、鞏固練習

  第12頁,練一練。

  四、課堂小結(jié)

  這節(jié)課學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱些長方體)得出了圓柱體的體積計算公式V=Sh。

  五、布置作業(yè)

  練習二第2,3,4,5題及數(shù)訓。

  六、板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積高

  圓柱的體積=底面積高

  V=Sh

圓柱的體積教案5

  教學目標:

  1、知識與技能:通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,使學生理解圓柱的體積公式的推導過程能夠運用公式正確地計算圓柱的體積。

  2、過程與方法:讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究法。

  3、情感態(tài)度與價值觀:通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,獲得成功的喜悅。

  教學重點:掌握和運用圓柱體積計算公式進行正確計算。

  教學難點:理解圓柱體積計算公式的推導過程,體會“轉(zhuǎn)化”方法的價值。

  教學過程:

  一、情景導入:

  1、教師:(出示)多么溫馨的場面,今天是亮亮和爺爺?shù)纳,幸福的一家人圍坐在飯桌前享用著美酒佳肴,你能觀察到今天的飯菜比平時多了什么嗎?

  學生:1、比平日多了兩個蛋糕。

  2、兩個蛋糕一個大一個小。

  3、蛋糕都是圓柱形的。

  2、教師:同學們觀察的很仔細,那你能根據(jù)剛學過的知識說一說爺爺?shù)案廨^大意味著什么嗎?

  學生:蛋糕大,意味著圓柱的體積大。

  3、教師:那你還知道什么是圓柱的體積嗎?

  學生:圓柱的體積就是圓柱體占空間的大小。

  4、教師:兩個蛋糕的體積相差較多,我們?nèi)菀妆容^出那個體積大,如果體積相差較小我們怎么比較呢?

  學生:拿出準備的圓柱體進行比較,討論,各小組分別說明比較的方法并展示。

  教師:板書:圓柱的體積

  二、課上探究

  1、教師:同學們回憶一下我們還學過那些立體圖形?

  學生:還學過正方體和長方體。

  教師:它們的體積怎樣計算?(多媒體出示長方體)有什么共同點?

  學生:長方體的體積=長×寬×高,長×寬=底面積,V=sh;正方體的體積=棱長×棱長×棱長,棱長×棱長=底面積,V=sh;共同點都是底面積乘高。

  2、猜測圓柱的體積與什么有關(guān)

  師:拿出圓柱體,讓學生猜想圓柱體積與什么有關(guān)。

  生1、圓柱的體積與圓柱的高有關(guān)。

  生2、圓柱的體積與圓柱的底面積有關(guān)。

  生3、圓柱的體積與圓柱的底面周長有關(guān)。

  生4、圓柱的體積與圓柱的底面半徑有關(guān)。

  3、推導圓柱體積公式

 、賻: 同學們觀察圓柱的底面是一個圓,學習圓面積時,我們是把圓轉(zhuǎn)化成哪種圖形來求面積的?

  生: 把圓轉(zhuǎn)化成近似長方形來求面積的。

  ②師:我們一起來回憶把圓轉(zhuǎn)化成近似長方形的過程,()

  師: 你發(fā)現(xiàn)了什么?

  生:我發(fā)現(xiàn)把圓平均分成的份數(shù)越多,拼成的圖形越接近長方形。

 、蹘煟簣A柱可以看成多個圓片摞在一起,把圓剪拼成的每個近似長方形也摞在一起。我們就把圓柱轉(zhuǎn)化成我們以前學過的哪種立體圖形呢?

  生:把圓柱轉(zhuǎn)化成近似的長方體。

 、軒熡脠A柱體演示轉(zhuǎn)換過程,讓學生說怎樣轉(zhuǎn)換的。

  生:把圓柱平均分成16份拼成一個近似的長方體。

 、輲: 為了讓大家看的更清楚,我們再演示一下這個轉(zhuǎn)化過程。

  再次演示把圓柱等分16等份,拼成近似的`長方體。

  再出示32等份的圓柱體拼成的近似的長方體,讓學生觀察,發(fā)現(xiàn)了什么?

  生:分成的份數(shù)越多,拼成的圖形越接近長方體。

  ⑥師:出示圓柱體和拼成的長方體,讓學生觀察,拼好的長方體與原來的圓柱比較,發(fā)現(xiàn)了什么?

  學生分組討論,匯報:

  生:長方體的高和圓柱的高相等。

  生:長方體的底面積和圓柱的底面積相等。

 、邘煟耗闶窃趺聪氲?

  生:剛才我們復習了把圓轉(zhuǎn)化成長方形,所以圓柱的底面積和長方體的底面積相等。

 、鄮煟涸俅斡脠A柱拼成近似長方體的過程,讓學生仔細觀察圓轉(zhuǎn)化成長方形后,面積相等。

  生:長方體的長是圓柱底面周長的一半,寬是圓柱底面半徑

  師:演示 長方體的體積=底面積×高

  ⑨師:那么圓柱的體積等于什么呢?

  生:圓柱的體積=底面積×高

 、庀旅嫖覀冊僖黄鸹貞浺幌罗D(zhuǎn)化的過程,()

  讓學生獨立填答案,匯報:

  三、我們知道了圓柱的體積公式,下面我們就來解決一些實際問題。

圓柱的體積教案6

  教學內(nèi)容:

  九年義務(wù)教育六年制第十二冊第36~37頁例4、例5及做一做,練習八的第1、2題。

  教學目標:

  1、理解圓柱體體積公式的推導過程,并會正確地計算出圓柱的體積。

  2、培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展空間觀念。

  3、引導學生探索和解決問題,體驗轉(zhuǎn)化及極限的思想方法。

  教學重點:圓柱體體積的計算.

  教學難點:理解圓柱體體積公式的推導過程.

  教具:多媒體課件、圓柱形容器、水、橡皮泥。

  教學過程:

  一、激凝導入

  師: 大家都知道,水是生命之源!我們要養(yǎng)成節(jié)約用水的好習慣?汕皟商欤蠋熂业乃堫^出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)

  (1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?

 。2)生回答。

  2、出示橡皮泥捏成的圓柱體。

  那你有辦法求出這個圓柱體橡皮泥的體積嗎?

  生(熱情的):老師將它捏成長方體或正方體就可以了!

  3、創(chuàng)設(shè)問題情境。

  師小結(jié):這么說同學們都有辦法將一些圓柱形的物體轉(zhuǎn)化為長方形或正方體來求它們的體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機大前輪)雄偉的`人民大會堂東門前的一個圓柱形門柱的體積,或者求壓路機圓柱形大前輪的體積,還能用剛才同學們想出來的辦法嗎?(不能)

  那怎么辦?

  學生試說出自己的辦法。

  師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

  二、經(jīng)歷體驗、探究新知

  1、推導圓柱的體積公式。

  師:你們打算怎么去研究圓柱的體積?

  小組同學討論研究的方法。

  2、學生動手操作感知

 。1)學生以小組為單位操作體驗。(操作學具,進行拼組)。

 。2)學生小組匯報交流:

  近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的底面積;近似長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。。。。。。

  (3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數(shù)份呢?(平均分的份數(shù)越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)

  3、教師課件演示圓柱轉(zhuǎn)化成長方體的過程。

  4、師生共同推導出圓柱的體積公式:

  長方體的體積=底面積高

  圓柱的體積=底圓柱面積高

  V = Sh

  5、鞏固公式

  ①V、S、h各表示什么?

 、谥滥男l件就可以求圓柱的體積?

  а、知道底面積和高可以直接用公式計算圓柱的體積;

  b、知道底面半徑和高,可以先計算出底面積,再計算體積;

  c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計算出圓柱的體積。

  學生回答后師板書。

  6、教學例4、例5。

  課件分別出示例4、例5,讓學生找出題中的條件和問題,然后獨立完成,集體訂正。

  三、實踐練習

  1、出示課件:人民大會堂東門前的門柱和壓路機大前輪的有關(guān)數(shù)據(jù)求出它的體積。

  2、拓展延伸:同學們到工廠參加社會實踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學們,現(xiàn)在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應是多少?小林想了想說:我知道了。

  同學們,你們知道小林是怎樣想的嗎?

  四、課堂總結(jié);

  通過本節(jié)課的學習,你有什么收獲?

圓柱的體積教案7

  教學目標:

  1、使學生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。

  2、讓學生經(jīng)歷觀察、操作、討論等數(shù)學活動過程,理解圓柱體積公式的推導過程,引導學生探討問題,體驗轉(zhuǎn)化和極限的思想。

  3、在圖形的變換中,培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習數(shù)學的方法,激發(fā)學生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。

  教學重點:

  圓柱體積計算公式的推導過程并能正確應用。

  教學難點:

  借助教具演示,弄清圓柱與長方體的關(guān)系。

  教具準備:

  多媒體課件、長方體、圓柱形容器若干個;學生準備推導圓柱體積計算公式用學具。

  教學設(shè)想:

  《 圓柱的體積 》是學生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進行教學的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經(jīng)歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學知識從生活中來到生活去的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探索。

  教學過程:

  一、創(chuàng)設(shè)情境,激疑引入

  水是生命之源!節(jié)約用水是我們每個公民應盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。

  1、出示裝了水的圓柱容器。

 。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?

 。2)討論后匯報

  生1:用量筒或量杯直接量出它的體積;

  生2:用秤稱出水的重量,然后進一步知道體積;

  生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。

  師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?

  生1:把水到入長方體容器中

  生2:我們學過了長方體的體積計算,只要量出長、寬、高就行

  [設(shè)計意圖:通過本環(huán)節(jié),給學生創(chuàng)設(shè)一個生活中的情境,提出問題,學習身邊的數(shù)學,激起學生的學習興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學內(nèi)容作了鋪墊的準備]

  2、創(chuàng)設(shè)問題情境。

  師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學們想出來的辦法嗎?

  [設(shè)計意圖:進一步從實際需要提出問題,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]

  師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

  二、經(jīng)歷體驗,探究新知

  1、回顧舊知,幫助遷移

  (1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯(lián)系?

  生1:圓柱的上下兩個底面是圓形

  生2:側(cè)面展開是長方形

  生3:說明圓柱和我們學過的圓和長方形有聯(lián)系

  師:請同學們想想圓柱的體積與什么有關(guān)?

  生1:可能與它的大小有關(guān)

  生2:不是吧,應該與它的高有關(guān)

  [設(shè)計意圖:溫故而知新,既復習了舊知識又引出了新知識,學生在不知不覺中就學到了新知。]

  (2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學過的圖形,來推導出圓面積公式的。

  配合學生回答演示課件。

  [設(shè)計意圖:通過想象,進一步發(fā)展學生的空間觀念,由形到體;同時使學生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊]

  2、小組合作,探究新知

 。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導學生說出圓柱可能轉(zhuǎn)化成我們學過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)

 。2)學生以小組為單位操作體驗。

  把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學生進一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)

  [設(shè)計意圖:教師提出問題,學生帶著問題大膽猜測、動手體驗。這樣學生在自主探索、體驗、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]

  (3)學生小組匯報交流

  近似的長方體的體積等于圓柱的體積, 近似的.長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。

  教師根據(jù)學生匯報,用教具進行演示。

  (4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導公式

  長方體的體積 = 底面積 高

  圓柱的體積 = 底面積 高

  用字母表示計算公式V= sh

  [設(shè)計意圖:首先通過學生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實踐操作,動畫演示,驗證了學生的發(fā)現(xiàn),從學生的認識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識 公式)]

  三、實踐應用,鞏固新知。

  1、火眼金睛判對錯。

 。1)長方體、正方體、圓柱的體積都等于底面積乘高。( )

 。2)圓柱的高越大,圓柱的體積就越大。( )

 。3)如果兩個圓柱的體積相等,則它們一定等底等高。( )

  [設(shè)計意圖:加深對剛學知識的分析和理解。]

  2、計算下面各圓柱的體積。

  (1)底面積是30平方厘米,高4厘米。

  (2)底面周長是12。56米,高是2米。

 。3)底面半徑是2厘米,高10厘米。

  [設(shè)計意圖:讓學生靈活運用公式進行計算。]

  3、實踐練習。

  提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。

  這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。

  [設(shè)計意圖:讓學生領(lǐng)悟數(shù)學與現(xiàn)實生活的聯(lián)系。]

  4、課堂作業(yè)。

  為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?

  [設(shè)計意圖:使學生進一步感受到生活中處處有數(shù)學,同時培養(yǎng)學生的環(huán)保意識。]

  四、反思回顧

  師:通過本節(jié)課的學習,你有什么收獲嗎?

  [設(shè)計意圖:讓不同層次的學生談學習收獲,可使每個學生都體驗到成功的喜悅。這樣,學生的收獲不僅只有知識,還包括能力、方法、情感等,學生體驗到學習的樂趣,增強了學好數(shù)學的信心。]

  板書設(shè)計:

  圓柱的體積

  根據(jù)圓柱與近似長方體的關(guān)系,推導公式

  長方體的體積 = 底面積 高

  圓柱的體積 = 底面積 高

  用字母表示計算公式V= sh

  教學反思:

  本節(jié)的教學從生活的實際創(chuàng)設(shè)情境,提出問題,讓學生學習有用的數(shù)學,提高了學生運用數(shù)學知識解決身邊問題的能力,從學數(shù)學的角度,注意了數(shù)學知識的特點。運用已有的知識(長方體體積的計算)經(jīng)驗(圓面積公式的推導)解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯(lián)系到一起,使學生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯(lián)系,并創(chuàng)造性的補充了一些與學生身邊實際生活相聯(lián)系的練習題,提高了學生的學習興趣。

圓柱的體積教案8

  教學內(nèi)容:

  北師大版教學六年級《圓柱的體積》

  教學目標:

  1、結(jié)合具體的情境和實踐活動,理解圓柱體體積的含義。

  2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3、培養(yǎng)學生初步的空間觀念和思維能力;

  教學重點:

  理解和掌握圓柱的體積計算公式,會求圓柱的體積。

  教學難點:

  理解圓柱體積計算公式的推導過程。

  教具準備:

  圓柱體積演示教具。

  教學過程:

  一、舊知鋪墊

  1、談話引入

  最近我們認識了圓柱和圓錐,還學會了計算圓柱的表面積。現(xiàn)在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的.大小實際是指它們的什么?(生答)

  2、提出問題:什么叫體積?我們學過那些圖形的體積?怎么算的?(生答師隨之板書)

  這節(jié)課我們就來學習圓柱的體積。

  二、自主探究,解決問題

 。ㄒ唬┱J識圓柱體積的意義。

  圓柱的體積到底是指什么?誰能舉例說呢?

  (二)圓柱體積的計算公式的推導。

  1、我們學過長方體和正方體體積的計算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)

  2、回憶圓面積的推導過程。

  3、教具演示。

  (1)取圓柱體模型。

 。2)將圓柱體切成兩半。

 。3)分別將兩半均分成若干小塊。

 。4)動手拼成一個近似的長方體。

 。ㄈw納公式。

  (板書:圓柱的體積=底面積高)

  用字母表示:(板書:V=Sh)

  三、鞏固新知

  1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?

  審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。

  現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?

  2、完成試一試

  3、跳一跳:統(tǒng)一直柱體的體積的計算方法。

  四、課堂總結(jié)、拓展延伸

  這節(jié)課學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點?

  五、布置作業(yè)

  練一練1-5題。

圓柱的體積教案9

  教學內(nèi)容:

  教材第15~16頁的例4和第16頁的試一試、練一練,完成練習三第1~3題。

  教學目標:

  1.結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。

  2.經(jīng)歷類比猜想驗證說明的探索圓柱體積的計算方法的進程,掌握圓柱體的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3.引導學生探索和解決問題,滲透、體驗知識間相互轉(zhuǎn)化的思想方法。

  重點難點:

  掌握圓柱體積公式的推導過程。

  教學資源:

  PPT課件 圓柱等分模型

  教學過程:

  一、聯(lián)系舊知,設(shè)疑激趣,導入新課。

  1.呈現(xiàn)例4中長方體、正方體和圓柱的直觀圖。

  2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的體積?

  啟發(fā):大家想不想知道圓柱的體積怎樣計算?猜想一下:圓柱體積的大小與什么有關(guān)?怎么算?

  3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計算公式。

  二、動手操作,探索新知,教學例4

  1.觀察比較

  引導學生觀察例4的三個立體,提問

 、胚@三個立體的底面積和高都相等,它們的體積有什么關(guān)系?

  ⑵長方體和正方體的體積一定相等嗎?為什么?

 、菆A柱的體積與長方體和正方體的體積可能相等嗎?為什么?

  2.實驗操作

 、耪勗挘捍蠹叶颊J為圓柱的體積與長方體、正方體的體積可能是相等的,而且都等于底面積乘高。那用什么辦法驗證呢?讓學生在小組中說說自己的想法。

  提醒:圓的面積公式是怎么推導出來的?我們能不能將圓柱轉(zhuǎn)化成長方體呢?

 、铺岢鲆螅耗隳芟朕k法把圓柱轉(zhuǎn)化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準備好的圓柱,操作一下。

  ⑶討論交流:如果把圓柱的底面平均分成16份,切開后能否拼成一個近似的長方體?

  操作教具,讓學生觀察。

  引導想像:如果把底面平均分的份數(shù)越來越多,結(jié)果會怎么樣?

  演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學生清楚地認識到:拼成的立體會越來越接近長方體。

  3.推出公式

 、盘釂枺浩闯傻拈L方體與原來的圓柱有什么關(guān)系?

  指出:長方體的體積與圓柱的`體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。

 、葡胍幌耄涸鯓忧髨A柱的體積?為什么?

  根據(jù)學生的回答小結(jié)并板書圓柱的體積公式

  圓柱的體積=底面積高

  ⑶引導用字母公式表示圓柱的體積公式:V=sh

  長方體的體積 = 底面積 高

  圓柱的體積 = 底面積 高

  用字母表示計算公式V= sh

  三、分層練習,發(fā)散思維,教學試一試

 、抛寣W生列式解答后交流算法。

 、朴懻摚褐朗裁礂l件就一定能算出圓柱的體積了?分別怎么算?

 。╯和h,r和h,d和h,c和h)

  四、鞏固拓展練習

  1.做練一練第1題。

  ⑴說一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?

  ⑵各自練習,并指名板演。

 、菍φ瞻逖,說說計算過程。

  2.做練一練第2題。

  已知底面周長和高,該怎么求它的體積呢?引導學生根據(jù)底面周長求出底面積。

  五、小結(jié)

  這節(jié)課我們學習了什么?有哪些收獲?還有什么疑問?

  六、作業(yè)

  練習三第1~3題。

圓柱的體積教案10

  教學目標:

  1、知識技能

  運用遷移規(guī)律,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2、過程方法

  讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。

  3、情感態(tài)度價值觀

  通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,獲得成功的喜悅。

  教學重點:

  圓柱體體積的計算公式的推導過程及其應用。

  教學難點:

  理解圓柱體體積公式的推導過程。

  教學準備:圓柱體積公式推導演示學具、多媒體課件。

  教學過程:

  一、復習導入

  同學們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經(jīng)學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體

  的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?

  二、圖柱轉(zhuǎn)化,自主探究,驗證猜想。

  (一)猜想。

  1、大家看圓柱的底面是一個圓形,在學習圓面積計算時,我們是把圓轉(zhuǎn)化成哪種圖形來計算的?(演示課件:圓轉(zhuǎn)化成長方形,推導圓面積公式的過程。)

  [數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師由復習圓面積公式的推導過程入手,實現(xiàn)知識的遷移。]

  2、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?揭示課題:圓柱的體積。

 。ǘ┎僮黩炞C。

  1、請學生拿出圓柱體的演示學具,以小組為單位,聯(lián)想圓形面積的轉(zhuǎn)化方式,合作探究將圓柱轉(zhuǎn)化為長方體的方法。

  在操作時,學生分組邊操作邊討論以下問題:

  ①拼成的近似長方體的`體積與原來的圓柱體積有什么關(guān)系?

 、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有什么關(guān)系?

  ?.拼成的近似長方體的高與原來的圓柱的高有什么關(guān)系?

  2、小組代表匯報

  (學生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)

  3、電腦演示操作

  (1)電腦演示圓柱體轉(zhuǎn)化成長方體的過程:

  仔細觀察:圓柱體轉(zhuǎn)化成一個長方體后,長方體的長相當于圓柱的什么?長方體的寬和高又相當于圓柱的什么?

  動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?

 。ǚ值姆謹(shù)越多,拼成的圖形就越接近長方體)

  (2)根據(jù)學生的觀察、分析、推想,老師完成板書:

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  V=Sh

 。3)你的猜想正確嗎?學生齊讀圓柱的體積計算公式。

  三、練習鞏固,靈活應用

  闖關(guān)1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?

  讓學生試做,集體反饋。

  闖關(guān)2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?

  學生討論、交流、匯報。

  小結(jié):解決以上問題的關(guān)鍵是先求出什么?(生:底面積)

  闖關(guān)3.下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的。)學生在練習本上獨立完成,集體反饋。

  四、課堂小結(jié)

  學習本節(jié)課你有哪些收獲?還有哪些疑惑?(生匯報收獲)

  五、布置作業(yè)

  教科書第21頁練習三第1-4題。

  板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  V= Sh

圓柱的體積教案11

  教材簡析:

  本節(jié)內(nèi)容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導出圓柱的體積計算公式。例4是圓柱的體計算公式的直接運用,是圓柱體積計算的基本,但這題又給學生設(shè)置了單位不統(tǒng)一的障礙,讓學生在直接應用公式計算的同時注意計量單位的統(tǒng)一。例5是圓柱體積計算公式的擴展練習,意在讓學生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴展外,公式的運用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的底面積,再求出水桶的體積。

  教學目的:

  1、運用遷移規(guī)律,引導學生借助因面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。

  2.會用圓柱的體積計算圓柱形物體的體積和容積。

  3.引導學生逐步學會轉(zhuǎn)化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力

  4.借助實物演示,培養(yǎng)學生抽象、概括的思維能力。

  教 具圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。

  學 具:小刀,用土豆做成的一個圓柱體。

  教學過程:

  一、復習鋪墊

  1.說說長方體的體積計算公式,正方體的體積計算公式,把這兩個體積公式統(tǒng)一成一個又是怎樣的?這個公式計算體積的物體有什么特征?

  2.指出圓柱各部分的名稱。說一說圓柱有多少條高?有幾個底面?每個1自由的面積如何計算?這個計算公式是怎樣推導出來的?

  二、設(shè)疑揭題

  我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。

  [評析:復習抓住教學重點,瞄準學習新知識所必須的舊知識,、舊方法進行鋪墊,溝通了知識之間的內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學習新知識的思路,導出了解決問題的方法,從而調(diào)動了學生學習的積極性,激發(fā)了學生探求新知識的欲望。

  三、新課教學

  1.探究推導圓柱的體積計算公式。

  (l)自學第43頁第二自然段,然后按照書中要求,兩人一組將于中的圓柱切開拼一拼,再說一說你拼成三個近似什么形狀的立方體?

  (2)請學生演示教具,學生邊演示邊講解切割拼合過程。

  (3)根據(jù)學生講解,出示圓柱和長方體的彩圖。

  (4)學生觀察兩個立體圖,找出兩圖之間有哪些部分是相等的?

  (5)依據(jù)長方體的體積計算公式推導出圓柱的體積計算公式。板書:V=sh

  (6)要用這個公式計算圓柱的體積必須知道什么條件?

  [評析:在教學中充分讓學生動手、動腦、動口,讓學生在操作中感知,在觀察中理解,在比較中歸納。教師的導、放、扶層次分明,充分體現(xiàn)了教師的主導作用和學生的`主體作用。這樣的教學,不僅有利于學生理解算理,掌握算法,而且在公式的推導過程中,領(lǐng)悟了學習方法,培養(yǎng)了學生的學習能力、抽象概括能力和邏輯思維能力]

  2.教學例4

  (1)出示例4。

  (2)默讀題目,看題目告訴了什么條件?要求什么?想一想你將如何計算?誰愿意試一試?

  (3)請一名同學板演,其余同學在作業(yè)本上做。

  (4)板演的同學講解自己的解題方法,說一說在做這道題的過程中遇到了什么問題,是怎樣解決的?

  (5)教師歸納學生所用的解題方法。強調(diào)在解題的過程中要注意單位統(tǒng)一。

  3.教學例5

  (1)請同學們想一想,如果已知圓柱底面的半徑r t和高h,怎樣求圓柱的體積?請學生自學并填寫第44頁第一自然段的空白部分。

  (2)出示例5,指名讀題。請同學們思考解題方法。

  (3)請學生講解題思路討論、歸納統(tǒng)一的解題方法。

  (4)讓學生按討論的方法做例5。

  (5)教師評講、總結(jié)方法。

  (6)學生討論。比較例4、例5有哪些相同和不同點。

  [評析:引導學生通過實際操作,由觀察、分析、比較,再進行計算,達到運用新知、鞏固新知的目的。]

  四、新知應用

  1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時反饋練習中出現(xiàn)的錯誤,并加以評講。

  2.剛才同學們在做例4時,還有下面幾種解法,請大家仔細思考,這些解法是對還是錯?試說明理由。

  (1)V=sh=5O2.1=105

  答:它的體積是105立方厘米

  (2)2.l米=210厘米

  V=sh=50210=10500

  答:它的體積是10500立方厘米。

  (3)50立方厘米=0.5立方米

  V=sh=0.52.1=1.05(立方米)

  答:它的體積是l.05立方米。

  (4)50平方厘米=0.005平方米。

  V=0。00521=0.01051

  答:它的體積是0.01051(立方米)。

  五、全課總結(jié)

  問:這節(jié)課里我們學到了哪些知識?根據(jù)學生回答教師總結(jié)。

  六、學生作業(yè)

  練習十一的第l 、2題。

  [總結(jié)實:本節(jié)課的教學體現(xiàn)了三個主要特點:一、利用遷移規(guī)律引入新課,為學生創(chuàng)設(shè)良好的學習情境;二、遵循學生的認知規(guī)律,引導學生操作、觀察、思考、說理,調(diào)動多種感觀參與學習;三、正確處理兩主關(guān)系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好?傊,本節(jié)課教師引導得法,學生學得靈活,體現(xiàn)了重在思,貴在導,導思結(jié)合的原則,體現(xiàn)了教是為了不教,學會是為了會學的素質(zhì)教育思想]

圓柱的體積教案12

  教學目標

  1.理解圓柱體體積公式的推導過程,掌握計算公式.

  2.會運用公式計算圓柱的體積.

  教學重點

  圓柱體體積的計算.

  教學難點

  理解圓柱體體積公式的推導過程.

  教學過程

  一、復習準備

  (一)教師提問

  1.什么叫體積?怎樣求長方體的體積?

  2.圓的面積公式是什么?

  3.圓的面積公式是怎樣推導的?

  (二)談話導入

  同學們,我們在研究圓面積公式的推導時,是把它轉(zhuǎn)化成我們學過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)

  二、新授教學

  (一)教學圓柱體的體積公式.(演示動畫“圓柱體的體積1”)

  1.教師演示

  把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.

  2.學生利用學具操作.

  3.啟發(fā)學生思考、討論:

 。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)

 。2)通過剛才的'實驗你發(fā)現(xiàn)了什么?

 、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.

 、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.

  ③近似長方體的高就是圓柱的高,沒有變化.

  4.學生根據(jù)圓的面積公式推導過程,進行猜想.

 。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?

 。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?

  (3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?

  5.啟發(fā)學生說出通過以上的觀察,發(fā)現(xiàn)了什么?

 。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體.

  (2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體.

  6.推導圓柱的體積公式

 。1)學生分組討論:圓柱體的體積怎樣計算?

  (2)學生匯報討論結(jié)果,并說明理由.

  因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)

 。3)用字母表示圓柱的體積公式.(板書:V=Sh)

  (二)教學例4.

  1.出示例4

  例4.一根圓柱形鋼材,底面積是50平方厘米,高是2。1米,它的體積是多少?

  2。1米=210厘米

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米.

  2.反饋練習

  (1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?

 。2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?

  (三)教學例5.

  1.出示例5

  例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?

  水桶的底面積:

 。3。14×

 。3。14×100

 。314(平方厘米)

  水桶的容積:

  314×25

 。7850(立方厘米)

  =7。8(立方分米)

  答:這個水桶的容積大約是7。8立方分米.

  三、課堂小結(jié)

  通過本節(jié)課的學習,你有什么收獲?

  1.圓柱體體積公式的推導方法.

  2.公式的應用.

  四、課堂練習

  (一)填表

  底面積S(平方米)15

  高h(米)3

  圓柱的體積V(立方米)6.4

 。ǘ┣笙旅娓鲌A柱的體積.

  (三)一個圓柱形水池,半徑是10米,深1。5米.這個水池占地面積是多少?水池的容積是多少立方米?

  五、課后作業(yè)

 。ㄒ唬┣笙铝袌D形的表面積和體積.(圖中單位:厘米)

 。ǘ﹥蓚底面積相等的圓柱,一個圓柱的高為4。5分米,體積為81立方分米.另一個圓柱的高為3分米,體積是多少?

  六、板書設(shè)計

圓柱的體積教案13

  教學目標:

  1、滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。

  2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力

  3、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  教學重點:

  掌握圓柱體積的計算公式。

  教學難點:

  圓柱體積的計算公式的推導。

  教學準備:主題圖、圓柱形物體

  教學過程:

  一、復習:

  1、長方體的體積公式是什么?

 。ㄩL方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

  2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

  3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導出求圓面積的計算公式。

  二、新課:

  1、圓柱體積計算公式的推導:

 。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的`立體圖形——課件演示)

 。2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。

 。ㄕn件演示將圓柱細分,拼成一個長方體)

  (3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

 。ㄩL方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)

  2、教學補充例題:

 。1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

  (2)指名學生分別回答下面的問題:

 、龠@道題已知什么?求什么?

  ②能不能根據(jù)公式直接計算?

 、塾嬎阒耙⒁馐裁?

 。ㄓ嬎銜r既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)

  (3)出示下面幾種解答方案,讓學生判斷哪個是正確的.

 、賄=Sh

  50×2.1=105(立方厘米)

  答:它的體積是105立方厘米。

 、2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米。

 、50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的體積是1.05立方米。

 、50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的體積是0.0105立方米。

  先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.

 。4)做第20頁的“做一做”。

  學生獨立做在練習本上,做完后集體訂正。

  3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?(V=πr2h)

  4、教學例6:

 。1)出示例6,并讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應先知道杯子的容積)

 。2)學生嘗試完成例6。

 、俦拥牡酌娣e:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ②杯子的容積:50.24×10=502.4(cm3)=502.4(ml)

  5、比較一下補充例題、例6有哪些相同的地方和不同的地方?

  (相同的是都要用圓柱的體積計算公式進行計算;不同的是補充例題已給出底面積,可直接應用公式計算;例6只知道底面直徑,要先求底面積,再求體積。)

  三、鞏固練習

  1、做第26頁的第1題:

  2、練習五的第2題:

  這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題后,知道要先求出底面積,再求圓柱的體積。

  四、全課總結(jié)

圓柱的體積教案14

  第二課時

  教學目標

  1.經(jīng)歷同桌合作,測量、計算圓柱形物體體積的過程。

  2.會測量圓柱形物體的有關(guān)數(shù)據(jù),能根據(jù)圓柱的高及底面直徑或周長計算圓柱的體積。

  3.能與同伴合作尋找解決問題的有效方法,能表達解決問題的大致過程和結(jié)果。

  教學重點

  能根據(jù)學生自己測量的數(shù)據(jù)進行圓柱體積的計算。

  教學難點

  給出圓柱底面周長如何計算圓柱的體積。

  教具準備

  學生自備的茶葉筒或露露瓶。

  教學過程

  一、測量茶葉筒的體積

  1.師:同學們,我們要想計算這個茶葉筒的體積,應該首先知道哪些數(shù)據(jù)?

  生:茶葉筒的高,底面直徑或半徑。

  師:很好,那么我們就來親手量一量你們手里的圓柱體的各個數(shù)據(jù),并計算出它們的體積。

  學生同桌合作測量并計算。

  2.交流測量數(shù)據(jù)的方法和計算的結(jié)果。

  3.剛才同學大部分都測量的是茶葉筒的高和直徑或半徑,有沒有測量茶葉筒的底面周長的?如果有,就說說是怎么測量和計算的。如果沒有,就提示大家,如果給出了圓柱底面周長,怎樣計算圓柱的體積呢?

  生:利用周長先求出半徑,再進行計算。

  師:你們會不會測量茶葉筒的底面周長呢?如果已經(jīng)忘記,就進行一下提示:在圓柱的底面上做一標記,然后把圓柱體在直尺上進行滾動。或用皮尺測量。請大家實際測量一下底面周長,并進行計算,看看和剛才計算的結(jié)果是否一致。

  二、鞏固練習

  1.一根圓柱形水泥柱子,它的底面周長是6.28分米,高200分米,求它的體積?

  2.獨立完成練一練的1-3題。

  三、家庭作業(yè)

  1.練一練的第4小題。

  2.①一個圓柱的的體積是141.3立方厘米,底面半徑3厘米,它的高是多少厘米?

 、谝桓鶊A柱形鋼材,截下2米,量得它的橫截面的'直徑是4厘米,如果每立方厘米鋼重7.8克,截下的這段鋼材重多少克?

  圓柱的體積

  第三課時 容積

  教學目標

  1.結(jié)合具體事例,經(jīng)歷探索容積計算問題的過程。

  2.掌握計算容積的方法,能解決有關(guān)容積的簡單實際問題。

  3.在解決容積問題的過程中,體驗數(shù)學與日常生活的密切聯(lián)系。

  教學重點

  利用體積公式計算保溫杯的容積。

  教學難點

  計算容積所需要的數(shù)據(jù)是容器內(nèi)壁的高、底面直徑或半徑,如何獲得這些數(shù)據(jù)。

  教學過程

  一、復習舊知

  1.求下列圓柱的體積(口答列式)。

  (1)底面積3平方分米,高4分米;

  (2)底面半徑2厘米,高2厘米;

 。3)底面直徑2分米,高3分米。

  追問:圓柱的體積是怎樣計算的?(板書:V=Sh)

  2.復習容積。

  提問:什么是容積?它與物體的體積有什么區(qū)別?我們是按什么方法計算容積的?

  3.引入新課。

  我們已經(jīng)學習過圓柱的體積計算,知道了容積和容積的計算方法。這節(jié)課,就在計算圓柱體積的基礎(chǔ)上,學習圓柱的容積計算。(板書課題)

  二、教學新課

  1.教學例題。

  出示例題,讀題。提問:這道題求什么?你能計算它的容積嗎?請大家仔細看一下題目,解答這道題還要注意些什么?(統(tǒng)一單位或改寫體積單位,取近似數(shù))指名學生板演,其余學生做在練習本上。集體訂正,說明每一步求的什么,怎樣求的。同時注意是怎樣統(tǒng)一單位和取近似值的。

  2.注意體積單位和容積單位的區(qū)別,以及它們之間的換算:

  1立方分米=1升 1立方厘米=1毫升

  3.注意保溫杯內(nèi)壁的厚度應該減去幾個才是內(nèi)壁的直徑,高應該減去幾個厚度才是內(nèi)壁的高?

  4.學生獨立完成。然后進行全班交流。

  三、新課小結(jié)

  1.提問:求圓柱形容器的容積要怎樣計算?如果知道圓柱底面的半徑或直徑,怎樣求圓柱的體積?

  2.計算容積與計算體積有什么相同點和不同點?

  四、提高練習

  把6個這樣的保溫杯倒?jié)M水,大約需要多少千克水?

  注意大頭蛙的話:1毫升水重1克。

  五、鞏固練習

  1.拿一個水杯,量出它的內(nèi)直徑和高,算一算這個水杯大約可以裝多少水?

  注意:如果給出水杯的外壁直徑、杯壁厚度和高,怎么計算?(內(nèi)壁就減兩個厚度,高減一個厚度,因為水杯沒有蓋。)

  2.練一練1:求水杯的水有多少是求水杯的容積嗎?水杯的高度與計算容積有關(guān)嗎?需要用哪個數(shù)據(jù)來計算?(杯中水的高度)

  3.練一練第4小題。怎么鋼管的體積?

  1)鋼管體積=大圓柱體積-小圓柱體積

  2)鋼管體積=鋼管環(huán)形底面積高

圓柱的體積教案15

  圓柱的體積

  教材簡析:

  本節(jié)內(nèi)容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導出圓柱的體積計算公式。

  教學目的:

  1、運用遷移規(guī)律,引導學生借助因面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。

  2。會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。

  3。引導學生逐步學會轉(zhuǎn)化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力

  4。借助實物演示,培養(yǎng)學生抽象、概括的思維能力。

  教 具:圓柱的體積公式演示教具,多媒體課件

  教學過程:

  一、情景引入

  1、出示圓柱形水杯。

 。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學過的方法計算出這些水的體積嗎?

 。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。

  2、創(chuàng)設(shè)問題情景。(課件顯示)

  如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?

  今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設(shè)計意圖:問題是思維的動力。通過創(chuàng)設(shè)問題情景,可以引導學生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。)

  二、新課教學:

  設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。

  1。探究推導圓柱的體積計算公式。

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學中,先讓學生通過復習舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導作用和學生的主體作用。這樣的教學,不僅有利于學生理解算理,掌握算法,而且在公式的推導過程當中,領(lǐng)悟了學習方法,培養(yǎng)了學生的學習能力、抽象概括能力和邏輯思維能力)

  要用這個公式計算圓柱的體積必須知道什么條件?

  填表:請同學看屏幕回答下面問題,

  底面積(㎡)高(m)圓柱體積(m3)

  63

  0.5 8

  52

 。ㄔO(shè)計意圖:設(shè)計練習能使學生達到舉一反三的效果,從而訓練學生的技能。這是第一層基本練習,通過這道題可以使學生更好的掌握本課重點,夯實基礎(chǔ)知)

  例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米。它的容積約是多少立方分米?(得數(shù)保留整立方分米)

  解: d=6dm,h=7dm。r=3dm

  S底 =πr2=3。14×32 =3。14×9 =28。26(dm2)

  V =S底h =28。26×7 =197。82198dm3 答:油桶的容積約是198立方分

  (設(shè)計意圖:使學生注意解題格式,注意體積的單位為三次方)

  三.鞏固反饋

  1.求下面圓柱體的體積。(單位:厘米)

  同學板演,其余同學在作業(yè)本上做。板演的同學講解自己的解題方法題,教師歸納學生所用的解題方法,強調(diào)在解題的過程當中格式。(設(shè)計意圖:這是第二層變式練習。是讓學生在掌握公式的基礎(chǔ)上理解公式,學會靈活運用公式的訓練題。通過對公式的拓展性理解,可以進一步加深學生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學生的邏輯思維能力。)

  練習:(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm。已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?

  (設(shè)計意圖:這是第三層發(fā)展性練習,安排了密切聯(lián)系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學就存在于自己的身邊。)

  四.拓展練習

  1.一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(結(jié)果保留π)

  2.一個底面直徑是20cm的`圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、

  (設(shè)計意圖:安排了密切聯(lián)系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,使學生認識到數(shù)學的價值體驗到數(shù)學對于了解周圍世界和解決實際問題是非常有作用的;能使學生的思維處于積極的狀態(tài)達到培養(yǎng)學生思維的靈活性和創(chuàng)造性解決問題能力的目的。)

  五.課堂小結(jié):

  1.談?wù)勥@節(jié)課你有哪些收獲。

  2.解題時需要注意那些方面。

 。ㄔO(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結(jié),使學生暢談收獲、發(fā)現(xiàn)不足,既能訓練學生的語言表達能力,又能培養(yǎng)學生的歸納概括能力;同時通過對本節(jié)所學知識的總結(jié)與回顧,還能使學生學到的知識系統(tǒng)化、完整化。)

  六.布置作業(yè)

  1。A冊習題2。7

  2。拓展練習2題

  教學反思: 本節(jié)課的教學體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學生創(chuàng)設(shè)良好的學習情境;二、遵循學生的認知規(guī)律,引導學生觀察、思考、說理,調(diào)動多種感觀參與學習;三、正確處理"兩主"關(guān)系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好。達到預期效果,不足處學生討論時間控制太少,課后作業(yè)個別學生還是對公式不會靈活應用。

【圓柱的體積教案】相關(guān)文章:

圓柱的體積教案12-17

圓柱的體積09-29

圓柱體積的教案12-16

小學數(shù)學《圓柱的體積》教案02-04

數(shù)學教案-圓柱的體積09-29

圓柱和圓錐的體積 教案及反思12-16

圓柱的體積教學反思 圓柱體體積的教學反思10-18

圓柱和圓錐體積教案08-26

數(shù)學教案:圓柱的體積(精選16篇)08-04