精選三角形內(nèi)角和教案3篇
作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準(zhǔn)備教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。來(lái)參考自己需要的教案吧!以下是小編為大家收集的三角形內(nèi)角和教案3篇,歡迎閱讀與收藏。
三角形內(nèi)角和教案 篇1
一、學(xué)生知識(shí)狀況分析
學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過(guò)平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線的性質(zhì)及嚴(yán)格的證明等知識(shí)的基礎(chǔ)上展開(kāi)的,因此,學(xué)生具有良好的基礎(chǔ)。
活動(dòng)經(jīng)驗(yàn)基礎(chǔ): 本節(jié)課主要采取的 活動(dòng)形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動(dòng)經(jīng)驗(yàn).
二、教學(xué)任務(wù)分析
上一節(jié)課的學(xué)習(xí)中,學(xué)生對(duì)于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡(jiǎn)單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識(shí),形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的`相關(guān)知識(shí)來(lái)推導(dǎo)出新的定理以及靈活運(yùn)用新的定理解決相關(guān)問(wèn)題。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識(shí)與技能:(1)掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單應(yīng)用。
(2)靈活運(yùn)用三角形內(nèi)角和定理解決相關(guān)問(wèn)題。
數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。
情感與態(tài)度:對(duì)比過(guò)去撕紙等探索過(guò)程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化 的理性作用.
三、教學(xué)過(guò)程分析
本節(jié)課的設(shè)計(jì)分為四個(gè)環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)
第一環(huán)節(jié):情境引入
活動(dòng)內(nèi)容:(1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.
實(shí)驗(yàn)1:先將紙片三角形一角折向其對(duì)邊,使頂點(diǎn)落在對(duì)邊上,折線與對(duì)邊平行(圖6-38(1))然后把另外兩角相向?qū)φ,使其頂點(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果
(1) (2) (3) (4)
試用自己的語(yǔ)言說(shuō)明這一結(jié)論的證明思路。想一想,還有其它折法嗎?
(2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。
試用自己的語(yǔ)言說(shuō)明這一結(jié)論的證明思路。想一想,如果只剪下一個(gè)角呢?
活動(dòng)目的:
對(duì)比過(guò)去撕紙等探索過(guò)程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。將自己的操作轉(zhuǎn)化為符號(hào)語(yǔ)言對(duì)于學(xué)生來(lái)說(shuō)還存在一定困難,因此需要一個(gè)臺(tái)階,使學(xué)生逐步過(guò)渡到嚴(yán)格的證明.
教學(xué)效果:
說(shuō)理過(guò)程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說(shuō)出用撕紙的方法可以驗(yàn)證三角形內(nèi)角和定理的原因。
第二環(huán)節(jié):探索新知
活動(dòng)內(nèi)容:
① 用嚴(yán)謹(jǐn)?shù)淖C明來(lái)論證三角形內(nèi) 角和定理.
、 看哪個(gè)同學(xué)想的方法最多?
方法一:過(guò)A點(diǎn)作DE∥BC
∵DE∥BC
DAB=B,EAC=C(兩直線平行,內(nèi)錯(cuò)角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代換)
方法二:作BC的延長(zhǎng)線CD,過(guò)點(diǎn)C作射線CE∥BA.
∵CE∥BA
ECD(兩直線平行,同位角相等)
ACE(兩直線平行,內(nèi)錯(cuò)角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代換)
活動(dòng)目的:
用平行線的判定定理及性質(zhì)定理來(lái)推導(dǎo)出新的定理,讓學(xué)生再次體會(huì)幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。
教學(xué)效果:
添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到 證明的目的.
第三環(huán)節(jié):反饋練習(xí)
活動(dòng)內(nèi)容:
(1)△ABC中可以有3個(gè)銳角嗎? 3個(gè)直角呢? 2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,則△ABC中B=?
(4)三角形的三個(gè)內(nèi)角中,只能有____個(gè)直角或____個(gè)鈍角.
(5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.
(6)三角形中三角之比 為1∶2∶3,則三個(gè)角各為多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度數(shù);
(b)若BD是AC邊上的高,求 DBC的度數(shù)?
活動(dòng)目的:
通過(guò)學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對(duì)三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
教學(xué)效果:
學(xué)生對(duì)于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問(wèn)題。
第四環(huán)節(jié):課堂小結(jié)
活動(dòng)內(nèi)容:
、 證明三角形內(nèi)角和定理有哪幾種方法?
、 輔助線的作法技巧.
、 三 角形內(nèi)角和定理的簡(jiǎn)單應(yīng)用.
活動(dòng)目的:
復(fù)習(xí)鞏固本課知識(shí),提高學(xué)生的掌握程度.
教學(xué)效果:
學(xué)生對(duì)于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運(yùn)用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.
課后練習(xí):課本第239頁(yè)隨堂練習(xí);第241頁(yè)習(xí)題6.6第1,2,3題
四、教學(xué)反思
三角形的有關(guān)知識(shí)是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識(shí),也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識(shí)相關(guān)聯(lián)的知識(shí),看似簡(jiǎn)單,但如果處理不好,會(huì)導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):
(1) 通過(guò)折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號(hào)化處理,最后達(dá)到推理論證的要求。
(2) 充分展示學(xué)生的個(gè)性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。
(3) 添加輔助線是教學(xué)中的一個(gè)難點(diǎn), 如何添加輔助線則應(yīng)允許學(xué)生展開(kāi)思考并爭(zhēng)論,展示學(xué)生的思維過(guò)程,然后在老師的引導(dǎo)下達(dá)成共識(shí)。
三角形內(nèi)角和教案 篇2
學(xué)習(xí)目標(biāo):
(1) 知識(shí)與技能 :
掌握三角形內(nèi)角和定理的證明過(guò)程,并能根據(jù)這個(gè)定理解決實(shí)際問(wèn)題。
(2) 過(guò)程與方法 :
通過(guò)學(xué)生猜想動(dòng)手實(shí)驗(yàn),互相交流,師生合作等活動(dòng)探索三角形內(nèi)角和為180度,發(fā)展學(xué)生的推理能力和語(yǔ)言表達(dá)能力。對(duì)比過(guò)去撕紙等探索過(guò)程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。逐漸由實(shí)驗(yàn)過(guò)渡到論證。
通過(guò)一題多解、一題多變等,初步體會(huì)思維的多向性,引導(dǎo)學(xué)生的個(gè)性化發(fā)展。
(3)情感態(tài)度與價(jià)值觀:
通過(guò)猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿(mǎn)著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生主動(dòng)探索,敢于實(shí)驗(yàn),勇于發(fā)現(xiàn),合作交流。
一.自主預(yù)習(xí)
二.回顧課本
1、三角形的內(nèi)角和是多少度?你是怎樣知道的?
2、那么如何證明此命題是真命題呢?你能用學(xué)過(guò)的知識(shí)說(shuō)一說(shuō)這一結(jié)論的證明思路嗎?你能用比較簡(jiǎn)潔的語(yǔ)言寫(xiě)出這一證明過(guò)程嗎?與同伴進(jìn)行交流。
3、回憶證明一個(gè)命題的步驟
、佼(huà)圖
、诜治雒}的題設(shè)和結(jié)論,寫(xiě)出已知求證,把文字語(yǔ)言轉(zhuǎn)化為幾何語(yǔ)言。
、鄯治觥⑻骄孔C明方法。
4、要證三角形三個(gè)內(nèi)角和是180,觀察圖形,三個(gè)角間沒(méi)什么關(guān)系,能不能象前面那樣,把這三個(gè)角拼在一起呢?拼成什么樣的角呢?
①平角,②兩平行線間的`同旁?xún)?nèi)角。
5、要把三角形三個(gè)內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫(huà)成虛線,添輔助線是解決問(wèn)題的重要思想方法。如何把三個(gè)角轉(zhuǎn)化為平角或兩平行線間的同旁?xún)?nèi)角呢?
、 如圖1,延長(zhǎng)BC得到一平角BCD,然后以CA為一邊,在△ABC的外部畫(huà)A。
、 如圖1,延長(zhǎng)BC,過(guò)C作CE∥AB
、 如圖2,過(guò)A作DE∥AB
、 如圖3,在BC邊上任取一點(diǎn)P,作PR∥AB,PQ∥AC。
三、鞏固練習(xí)
四、學(xué)習(xí)小結(jié):
(回顧一下這一節(jié)所學(xué)的,看看你學(xué)會(huì)了嗎?)
五、達(dá)標(biāo)檢測(cè):
略
六、布置作業(yè)
三角形內(nèi)角和教案 篇3
教學(xué)內(nèi)容:
人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)數(shù)學(xué)四年級(jí)下冊(cè)第67頁(yè)。
設(shè)計(jì)理念:
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價(jià)值的數(shù)學(xué),讓學(xué)生帶著問(wèn)題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對(duì)于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開(kāi)教學(xué),培養(yǎng)學(xué)生提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的探究能力。
教材分析:
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類(lèi)之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問(wèn)題的基礎(chǔ)。學(xué)生在掌握知識(shí)方面:已經(jīng)掌握了三角形的分類(lèi),比較熟悉平角等有關(guān)知識(shí);能力方面:經(jīng)過(guò)三年多的.學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結(jié)論,而是通過(guò)量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180。
學(xué)情分析:
學(xué)生已經(jīng)掌握三角形特性和分類(lèi),熟悉了鈍角、銳角、平角這些角的知識(shí),大多數(shù)學(xué)生已經(jīng)在課前通過(guò)不同的途徑知道三角形的內(nèi)角和是180度的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問(wèn)題的過(guò)程是本節(jié)課的重點(diǎn)。四年級(jí)的學(xué)生已經(jīng)初步具備了動(dòng)手操作的意識(shí)和能力,并形成了一定的空間觀念,能夠在探究問(wèn)題的過(guò)程中,運(yùn)用已有知識(shí)和經(jīng)驗(yàn),通過(guò)交流、比較、評(píng)價(jià)尋找解決問(wèn)題的途徑和策略。
教學(xué)目標(biāo):
1. 使學(xué)生經(jīng)歷自主探索三角形的內(nèi)角和的過(guò)程,知道三角形的內(nèi)角和是180°,能運(yùn)用這一規(guī)律解決一些簡(jiǎn)單的問(wèn)題。
2. 使學(xué)生在觀察、操作、分析、猜想、驗(yàn)證、合作、交流等具體活動(dòng)中,提高動(dòng)手操作能力和數(shù)學(xué)思考能力。
3. 使學(xué)生在參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過(guò)程中,獲得成功的體驗(yàn),感受探索數(shù)學(xué)規(guī)律的樂(lè)趣,產(chǎn)生喜歡數(shù)學(xué)的積極情感,培養(yǎng)積極與他人合作的意識(shí)
【三角形內(nèi)角和教案】相關(guān)文章:
三角形內(nèi)角和教案02-19
教案:《三角形的內(nèi)角和》12-17
教案及反思:三角形的內(nèi)角和12-17
《三角形內(nèi)角和》12-13
三角形的內(nèi)角和09-29
三角形的內(nèi)角和12-13
【精選】三角形內(nèi)角和教案四篇05-15
三角形內(nèi)角和教案15篇02-20