《解簡(jiǎn)易方程》的教學(xué)反思范文
數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來(lái)教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:
老方法:
x + 4 = 20
x = 20-4
依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。
新方法:
x + 4 = 20
x + 4-4=20-4
依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
改革的原因(摘自教學(xué)參考書(shū)):
新教材編寫(xiě)者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。
從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。
那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會(huì)出現(xiàn)什么樣的情況?這樣的改革有沒(méi)有什么問(wèn)題? 在我的教學(xué)過(guò)程中真的出現(xiàn)了問(wèn)題 。
1.無(wú)法解如a-x=b和a÷x=b此類的方程
新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)減去(加上)a;解如ax=b與x÷a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)除以(乘上)a。這就是所謂“相比原來(lái)方法,思路更為統(tǒng)一”的優(yōu)越性。然而,它有一個(gè)相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小學(xué)生還沒(méi)有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的基本性質(zhì)解a-x=b,方程變形的過(guò)程及算理解釋比較麻煩;而a÷x=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。
我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問(wèn)題。因?yàn)楫?dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),總是要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時(shí)更會(huì)無(wú)法避免地直接和方程思想發(fā)生矛盾。
如“3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?”
合理的做法應(yīng)是“設(shè)桃子每千克X元”,從順向思考,列出方程為“2.5×3-5X=0.5”。然而,按新教材的編排,因?yàn)閷W(xué)生現(xiàn)在不會(huì)解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成“5X+0.5=2.5×3”之類的方程。又如:課本第62頁(yè)中的“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生根據(jù)“爸爸比小明大28歲”列出40-Х=28,可是無(wú)法求解,所以又轉(zhuǎn)成Х+28=40。
很明顯,第二個(gè)方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問(wèn)題更加直接自然。為實(shí)現(xiàn)這個(gè)目標(biāo),很重要的一點(diǎn),就是列式時(shí)應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成“5X+0.5=2.5×3”“ Х+28=40”那就說(shuō)明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時(shí),用算術(shù)方法即可,哪還有列方程來(lái)解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識(shí)方程的優(yōu)越性呢?
我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問(wèn)題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見(jiàn)、很必要的現(xiàn)象。要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。
2.解方程的書(shū)寫(xiě)過(guò)程太繁瑣
教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過(guò)程應(yīng)該要寫(xiě)出來(lái),等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來(lái)了書(shū)寫(xiě)上的繁瑣。
因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒(méi)什么,但對(duì)一些稍復(fù)雜的方程,其解的過(guò)程就顯得太繁瑣了。
從這兩個(gè)方面來(lái)看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來(lái)解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問(wèn)題。那么,如果說(shuō)用算術(shù)思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問(wèn)題,那我們又如何是好呢?
【《解簡(jiǎn)易方程》的教學(xué)反思】相關(guān)文章:
解簡(jiǎn)易方程教學(xué)反思04-15
解簡(jiǎn)易方程(例2)反思(原創(chuàng))04-28
簡(jiǎn)易方程教學(xué)反思04-07
解簡(jiǎn)易方程數(shù)學(xué)教案02-08
簡(jiǎn)易方程—實(shí)際問(wèn)題與方程教學(xué)反思范文04-27
《簡(jiǎn)易方程的整理與復(fù)習(xí)》教學(xué)反思(精選12篇)12-05