- 相關(guān)推薦
高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿范文
本文是應(yīng)屆畢業(yè)生網(wǎng)小編為大家整理的高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿范文,希望對(duì)大家有所幫助,
高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿范文
。一.說教材
地位及重要性
函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(cè)(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi)。函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),也是在研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì),并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。
教學(xué)目標(biāo)
(1)了解能用文字語言和符號(hào)語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;
(2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;
(3)明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡(jiǎn)單函數(shù)的單調(diào)性;
(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時(shí)讓學(xué)生體驗(yàn)數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點(diǎn)看問題。
教學(xué)重難點(diǎn)
重點(diǎn)是對(duì)函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解。
難點(diǎn)是利用函數(shù)單調(diào)性的概念證明或判斷具體函數(shù)的單調(diào)性,
資料共享平臺(tái)
《高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿范文》(http://www.msguai.com)。二.說教法
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我嘗試運(yùn)用“問題解決”與“多媒體輔助教學(xué)”的模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動(dòng)參與以達(dá)到對(duì)知識(shí)的“發(fā)現(xiàn)”與接受,進(jìn)而完成對(duì)知識(shí)的內(nèi)化,使書本知識(shí)成為自己知識(shí);同時(shí)也培養(yǎng)學(xué)生的探索精神。
三.說學(xué)法
在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點(diǎn)撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對(duì)函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個(gè)過程學(xué)生學(xué)生主動(dòng)參與、積極思考、探索嘗試的動(dòng)態(tài)活動(dòng)之中;同時(shí)讓學(xué)生體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。
四.說過程
通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。
設(shè)置問題情景
[引例]學(xué)校準(zhǔn)備建造一個(gè)矩形花壇,面積設(shè)計(jì)為16平方米。由于周圍環(huán)境的限制,其中一邊的長(zhǎng)度長(zhǎng)不能超過10米,短不能少于4米。記花壇受限制的一邊長(zhǎng)為x米,半周長(zhǎng)為y米。
寫出y與x的函數(shù)表達(dá)式;
求(1)中函數(shù)的最大值。
(用多媒體出示問題,并讓學(xué)生思考)
通過問題情景的設(shè)置主要是為了達(dá)到以下兩個(gè)目的:
、诺谝粏枮榱藦(fù)習(xí)回顧函數(shù)的表達(dá)式;
五、板書
【高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿】相關(guān)文章:
高中數(shù)學(xué)《單調(diào)性與最大(小)值》說課稿09-07
《函數(shù)的概念》說課稿08-15
高中數(shù)學(xué)《幾類不同增長(zhǎng)的函數(shù)模型》說課稿07-06
高中數(shù)學(xué)教學(xué)-三角函數(shù)的性質(zhì)及應(yīng)用09-09
初中數(shù)學(xué)《反比例函數(shù)》說課稿(精選5篇)08-21
高中數(shù)學(xué)標(biāo)軸的平移說課稿10-11
初中數(shù)學(xué)說課稿《一次函數(shù)的圖像》07-26