亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

八年級(jí)數(shù)學(xué)教案

時(shí)間:2021-06-04 10:08:45 數(shù)學(xué)教案 我要投稿

有關(guān)八年級(jí)數(shù)學(xué)教案集合八篇

  作為一名為他人授業(yè)解惑的教育工作者,常常需要準(zhǔn)備教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家收集的八年級(jí)數(shù)學(xué)教案8篇,希望對(duì)大家有所幫助。

有關(guān)八年級(jí)數(shù)學(xué)教案集合八篇

八年級(jí)數(shù)學(xué)教案 篇1

  第一步:情景創(chuàng)設(shè)

  乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):

  A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?

  (1)請(qǐng)你算一算它們的平均數(shù)和極差。

 。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?

  今天我們一起來探索這個(gè)問題。

  探索活動(dòng)

  通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動(dòng)

  算一算

  把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。

  想一想

  你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?

  第二步:講授新知:

 。ㄒ唬┓讲

  定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用

  來衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

  意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小

  在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定

  歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小

 。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)

  (4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的

  方差的簡(jiǎn)便公式:

  推導(dǎo):以3個(gè)數(shù)為例

 。ǘ(biāo)準(zhǔn)差:

  方差的算術(shù)平方根,即④

  并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來衡量一組數(shù)據(jù)的波動(dòng)大小的重要的量.

  注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

八年級(jí)數(shù)學(xué)教案 篇2

  一、學(xué)生起點(diǎn)分析

  學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?

  反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中

  可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

  二、學(xué)習(xí)任務(wù)分析

  本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問題;通過具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

  ● 知識(shí)與技能目標(biāo)

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標(biāo)

  1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

  2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

  ● 情感與態(tài)度目標(biāo)

  1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

  2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。

  教學(xué)重點(diǎn)

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學(xué)法

  1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

  本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

  但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;

  (2)從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程;

  (3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件。

  學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

  四、教學(xué)過程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?

  2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

  意圖:

  通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

  意圖:

  通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

  從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

  內(nèi)容2:說理

  提問:有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?

  意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

  滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。

  注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級(jí),還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。

  活動(dòng)3:反思總結(jié)

  提問:

  1.同學(xué)們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

  4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

  意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用

  效果

  每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。

  第四環(huán)節(jié):登高望遠(yuǎn)

  內(nèi)容:

  1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫出相應(yīng)的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。

  效果:

  學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。

  效果:

  學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);

  2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

  意圖:

  鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。

  效果:

  學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

  第七環(huán)節(jié):布置作業(yè)

  課本習(xí)題1.4第1,2,4題。

  五、教學(xué)反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

  2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學(xué)知識(shí)解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。

  4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

  5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

  由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

  附:板書設(shè)計(jì)

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠(yuǎn)

八年級(jí)數(shù)學(xué)教案 篇3

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.

 。ㄖ赋觯号卸ㄒ粋(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)

  二、例習(xí)題分析

  例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么?

 。1)有一個(gè)角是直角的`四邊形是矩形;(×)

  (2)有四個(gè)角是直角的四邊形是矩形;(√)

 。3)四個(gè)角都相等的四邊形是矩形;(√)

 。4)對(duì)角線相等的四邊形是矩形;(×)

  (5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)

  (6)對(duì)角線互相平分且相等的四邊形是矩形;(√)

  (7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)

 。8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)

 。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;

 。2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來證明

八年級(jí)數(shù)學(xué)教案 篇4

  知識(shí)要點(diǎn)

  1、函數(shù)的概念:一般地,在某個(gè)變化過程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,

  相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

  3、正比例函數(shù)y=kx的性質(zhì)

  (1)、正比例函數(shù)y=kx的圖象都經(jīng)過

  原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;

  (2)、當(dāng)k0時(shí),圖象都經(jīng)過一、三象限;

  當(dāng)k0時(shí),圖象都經(jīng)過二、四象限

  (3)、當(dāng)k0時(shí),y隨x的增大而增大;

  當(dāng)k0時(shí),y隨x的增大而減小。

  4、一次函數(shù)y=kx+b的性質(zhì)

  (1)、經(jīng)過特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,

  與y軸的交點(diǎn)坐標(biāo)是 .

  (2)、當(dāng)k0時(shí),y隨x的增大而增大

  當(dāng)k0時(shí),y隨x的增大而減小

  (3)、k值相同,圖象是互相平行

  (4)、b值相同,圖象相交于同一點(diǎn)(0,b)

  (5)、影響圖象的兩個(gè)因素是k和b

  ①k的正負(fù)決定直線的方向

 、赽的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方

  5.五種類型一次函數(shù)解析式的確定

  確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。

  (1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式

  例1、若函數(shù)y=3x+b經(jīng)過點(diǎn)(2,-6),求函數(shù)的解析式。

  解:把點(diǎn)(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函數(shù)的解析式為:y=3x-12

  (2)、根據(jù)直線經(jīng)過兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式

  例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點(diǎn)B(2,7),

  求函數(shù)的表達(dá)式。

  解:把點(diǎn)A(3,4)、點(diǎn)B(2,7)代入y=kx+b,得

  ,解得:

  函數(shù)的解析式為:y=-3x+13

  (3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式

  例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時(shí)間x

  (小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x

  (小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。

  (4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式

  例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次

  函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .

  解:直線 經(jīng)過點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位

  后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,

  得 ,解得: ,函數(shù)的解析式為:y=2x+1

  (5)、根據(jù)直線的對(duì)稱性,確定函數(shù)的解析式

  例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對(duì)稱,求k、b的值。

  例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對(duì)稱,求k、b的值。

  例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對(duì)稱,求k、b的值。

  經(jīng)典訓(xùn)練:

  訓(xùn)練1:

  1、已知梯形上底的長(zhǎng)為x,下底的長(zhǎng)是10,高是 6,梯形的面積y隨上底x的變化而變化。

  (1)梯形的面積y與上底的長(zhǎng)x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?

  (2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。

  訓(xùn)練2:

  1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函數(shù)有___ __;正比例函數(shù)有____________(填序號(hào)).

  2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

  A.k1 B.k-1 C.k1 D.k為任意實(shí)數(shù).

  3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

  訓(xùn)練3:

  1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

  2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.

  4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點(diǎn),則k=_____;

  若y隨x的增大而增大,則k__________.

  5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

  訓(xùn)練4:

  1、 正比例函數(shù)的圖象經(jīng)過點(diǎn)A(-3,5),寫出這正比例函數(shù)的解析式.

  2、已知一次函數(shù)的圖象經(jīng)過點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

  3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

  4、已知一次函數(shù)y=kx+b,在x=0時(shí)的值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。

  5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.

  (1)求出y與x之間的函數(shù)關(guān)系式;

  (2)當(dāng)x=3時(shí),求y的值.

  一、填空題(每題2分,共26分)

  1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .

  2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .

  3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對(duì)稱,則 .

  4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .

  5、函數(shù) ,如果 ,那么 的取值范圍是 .

  6、一個(gè)長(zhǎng) ,寬 的矩形場(chǎng)地要擴(kuò)建成一個(gè)正方形場(chǎng)地,設(shè)長(zhǎng)增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).

  7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .

  8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .

  9、已知一次函數(shù) 的圖象經(jīng)過點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對(duì)稱,那么這個(gè)一次函數(shù)的解析式為 .

  10、一次函數(shù) 的圖象過點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .

  11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).

  12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.

  13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .

  二、選擇題(每題3分,共36分)

  14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

  15、若直線 與 的交點(diǎn)在 軸上,那么 等于( )

  A.4 B.-4 C. D.

  16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )

  17、直線 如圖5,則下列條件正確的是( )

  18、直線 經(jīng)過點(diǎn) , ,則必有( )

  A.

  19、如果 , ,則直線 不通過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

  A. B. C. D.都不對(duì)

  21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )

  圖6

  22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點(diǎn)B, ,則 的面積為( )

  A.4 B.5 C.6 D.7

  23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )

  A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

  24、已知 ,那么 的圖象一定不經(jīng)過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時(shí),甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達(dá)距A站22千米處.設(shè)甲從P處出發(fā) 小時(shí),距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )

  三、解答題(1~6題每題8分,7題10分,共58分)

  26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.

  27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請(qǐng)通過不同的取值得出結(jié)論?

  28、某油庫有一大型儲(chǔ)油罐,在開始的8分鐘內(nèi),只開進(jìn)油管,不開出油管,油罐的油進(jìn)至24噸(原油罐沒儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.

  (1)試分別寫出這一段時(shí)間內(nèi)油的儲(chǔ)油量Q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.

  (2)在同一坐標(biāo)系中,畫出這三個(gè)函數(shù)的圖象.

  29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過部分按每度0.50元計(jì)費(fèi).

  (1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫出 關(guān)于 的函數(shù)關(guān)系式.

  (2)小王家第一季度交納電費(fèi)情況如下:

  月份 一月份 二月份 三月份 合計(jì)

  交費(fèi)金額 76元 63元 45元6角 184元6角

  問小王家第一季度共用電多少度?

  30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.

  (1)求 與 之間的函數(shù)關(guān)系式;

  (2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]

  31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時(shí),汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時(shí)間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?

  32、甲乙兩個(gè)倉庫要向A、B兩地運(yùn)送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)

  路程/千米 運(yùn)費(fèi)(元/噸、千米)

  甲庫 乙?guī)?甲庫 乙?guī)?/p>

  A地 20 15 12 12

  B地 25 20 10 8

  (1)設(shè)甲庫運(yùn)往A地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).

  (2)當(dāng)甲、乙兩庫各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?

八年級(jí)數(shù)學(xué)教案 篇5

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

  2.使學(xué)生能夠求出分式有意義的條件;

  3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;

  4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識(shí).

  二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.

  2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式意義的理解.

  三、教學(xué)過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個(gè)因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問,這是不是整式?請(qǐng)一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學(xué)生分組討論分式的定義,對(duì)于“兩個(gè)整式相除叫做分式”等錯(cuò)誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

  用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學(xué)生舉幾個(gè)分式的例子.

  (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.

 、俜帜钢泻凶帜.

 、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

  (4)問:何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

  2.有理式的分類

  請(qǐng)學(xué)生類比有理數(shù)的分類為有理式分類:

  例1 當(dāng)取何值時(shí),下列分式有意義?

  (1);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (2);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實(shí)數(shù)時(shí),原分式都有意義.

  (4).

  解:由分母得.

  ∴當(dāng)且時(shí),原分式有意義.

  思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無意義?”該怎樣做?

  例2 當(dāng)取何值時(shí),下列分式的值為零?

  (1);

  解:由分子得.

  而當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當(dāng)時(shí),分母,分式無意義.

  當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  (3);

  解:由分子得.

  而當(dāng)時(shí),分母.

  當(dāng)時(shí),分母.

  ∴當(dāng)或時(shí),原分式值都為零.

  (4).

  解:由分子得.

  而當(dāng)時(shí),,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結(jié)、擴(kuò)展

  1.分式與分?jǐn)?shù)的區(qū)別.

  2.分式何時(shí)有意義?

  3.分式何時(shí)值為零?

  (五)隨堂練習(xí)

  1.填空題:

  (1)當(dāng)時(shí),分式的值為零

  (2)當(dāng)時(shí),分式的值為零

  (3)當(dāng)時(shí),分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設(shè)計(jì)

  課題 例1

  1.定義例2

  2.有理式分類

八年級(jí)數(shù)學(xué)教案 篇6

  學(xué)習(xí)目標(biāo)

  1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。

  2、由坐標(biāo)的變化探索新舊圖形之間的變化。

  重點(diǎn)

  1、 作某一圖形關(guān)于對(duì)稱軸的對(duì)稱圖形,并能寫出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。

  2、 根據(jù)軸對(duì)稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

  難點(diǎn)

  體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問題

  學(xué)習(xí)過程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))

  第一課時(shí)

  學(xué)習(xí)過程:

  一、舊知回顧:

  1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

  2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。

  3、各象限點(diǎn)的坐標(biāo)的特征:

  二、新知檢索:

  1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

  三、典例分析

  例1、

  (1) 將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

  (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

  例2、(1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  四、題組訓(xùn)練

  1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來形成一個(gè)圖案。

  (1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個(gè)點(diǎn)用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

  (2)縱、橫分別加3呢?

  (3)縱、橫分別變成原來的2倍呢?

  歸納:圖形坐標(biāo)變化規(guī)律

  1、 平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:

  第二課時(shí)

  一、舊知回顧:

  1、軸對(duì)稱圖形定義:如果一個(gè)圖形沿著 對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形。

  中心對(duì)稱圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形

  二、新知檢索:

  1、如圖,左邊的魚與右邊的魚關(guān)于y軸對(duì)稱。

  1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

  2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?

  3、如果將圖中右邊的魚沿x軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱,那么左邊的魚各個(gè)頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?

  三、典例分析,如圖所示,

  1、右圖的魚是通過什么樣的變換得到 左圖的魚的。

  2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。

  3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系

  四、題組練習(xí)

  1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?

 、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

  ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。

  3、 如圖,作字母M關(guān)于y軸的軸對(duì)稱圖形,并寫出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。

  4、 描出下圖中楓葉圖案關(guān)于x軸的軸對(duì)稱圖形的簡(jiǎn)圖。

  學(xué)習(xí)筆記

八年級(jí)數(shù)學(xué)教案 篇7

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點(diǎn)及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

  教學(xué)重點(diǎn):

  1、 一次函數(shù)解析式特點(diǎn)

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點(diǎn):

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  教學(xué)過程:

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

  分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

  問題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來.他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

  分析 我們?cè)O(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問題3 以上問題1和問題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

 、颍畬(dǎo)入新課

  上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

  (5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

 。7)一棵樹現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

  (5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

 。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

  (1)寫出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時(shí),y的值.

  解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

  又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫有一沒儲(chǔ)油的儲(chǔ)油罐,在開始的8分鐘時(shí)間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因?yàn)樵谥淮蜷_進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

 、螅S堂練習(xí)

  根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時(shí),超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不

  超過6米3和超過6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

 、簦n時(shí)小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。

  Ⅴ.課后作業(yè)

  1、已知y-3與x成正比例,且x=2時(shí),y=7

  (1)寫出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計(jì)算y=-4時(shí)x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

  3.倉庫內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹約有多高.

  5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過800元,免交個(gè)人所得稅.超過800元不超過1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級(jí)數(shù)學(xué)教案 篇8

  一、創(chuàng)設(shè)情境

  1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫出一次函數(shù)的圖象?

 。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?

 。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).

  3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

  4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的圖象時(shí),通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

  2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

  分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

  解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

  過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

  三、實(shí)踐應(yīng)用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

  解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

【有關(guān)八年級(jí)數(shù)學(xué)教案集合八篇】相關(guān)文章:

有關(guān)小學(xué)數(shù)學(xué)教案模板集合5篇01-19

有關(guān)小學(xué)數(shù)學(xué)教案10篇03-08

有關(guān)小學(xué)數(shù)學(xué)教案九篇06-15

有關(guān)小學(xué)數(shù)學(xué)教案7篇06-08

有關(guān)小學(xué)數(shù)學(xué)教案八篇06-03

有關(guān)小學(xué)數(shù)學(xué)教案六篇03-28

有關(guān)小學(xué)數(shù)學(xué)教案五篇03-17

有關(guān)小學(xué)數(shù)學(xué)教案8篇03-04

有關(guān)小學(xué)數(shù)學(xué)教案三篇03-03

有關(guān)小學(xué)數(shù)學(xué)教案4篇03-03