亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

六年級數(shù)學(xué)鴿巢教案

時間:2023-01-04 17:22:27 數(shù)學(xué)教案 我要投稿

六年級數(shù)學(xué)鴿巢教案4篇

  作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學(xué),教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。寫教案需要注意哪些格式呢?下面是小編精心整理的六年級數(shù)學(xué)鴿巢教案,希望能夠幫助到大家。

六年級數(shù)學(xué)鴿巢教案4篇

六年級數(shù)學(xué)鴿巢教案1

  教學(xué)內(nèi)容:

  練習(xí)一6~8

  重難點:

  會靈活運用知識解決實際問題。

  突破方法:

  引導(dǎo)學(xué)生獨立思考,合作交流。

  教學(xué)步驟:

  一、游戲引入:擺子連線。

  二、指導(dǎo)練習(xí)。

  1、練習(xí)一.6.

  (1)出示方格紙,讓學(xué)生在方格紙上把三角形平移。從平移的過程中你了解到哪些信息?

  (2)引導(dǎo)學(xué)生觀察圖形平移后,表示頂點位置的數(shù)對有什么變化?

  (3)試一試,小組交流。

  2、練習(xí)一.8.

  (1)組織學(xué)生讀題,理解題意。

  (2)討論:怎樣編號?

  (3)全班匯報交流。

  三、提高訓(xùn)練。

  練習(xí)一.7.(1)組織學(xué)生讀題,理解題意。(2)小組合作探究a.移一移,說一說。b.比較區(qū)別。c.提出數(shù)學(xué)問題并解答。

  四、課堂小結(jié)。

  五、補充練習(xí)。(單元格自行設(shè)計)

  1、先標出三角形各個頂點的位置,再分別畫出三角形向右、向下平移5個單位后的圖形,再標明平移后圖形各個頂點的位置。

  2、(1)趙東家在少年宮以東200m,

  再往南100m處;李倩家在公園以

  西的`400m,再往北200m處。請在

  圖中標出這兩位同學(xué)家的位置。

  (2)趙東從家出發(fā),依次路線是

  (12,2)

  (10,3)

  (9,5)

  (3,4)

  (4,2),你知道

  他今天先后去過哪些地方嗎?

六年級數(shù)學(xué)鴿巢教案2

  一、學(xué)習(xí)目標

 。ㄒ唬⿲W(xué)習(xí)內(nèi)容

  《義務(wù)教育教科書數(shù)學(xué)》(人教版)六年級下冊第五單元第68~69頁的例1、2!俺閷显怼笔且活愝^為抽象和艱澀的數(shù)學(xué)問題,對全體學(xué)生而言具有一定的挑戰(zhàn)性。為此,教材選擇了一些常見的、熟悉的事物作為學(xué)習(xí)內(nèi)容,經(jīng)歷將具體問題“數(shù)學(xué)化”的過程。

  (二)核心能力

  經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應(yīng)用能力。

 。ㄈ⿲W(xué)習(xí)目標

  1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關(guān)的實際問題或解釋相關(guān)的現(xiàn)象。

  2.通過操作、觀察、比較、說理等數(shù)學(xué)活動,經(jīng)歷鴿巢原理的形成活動,初步形成模型思想,發(fā)展抽象能力、推理能力和應(yīng)用能力。

 。ㄋ模⿲W(xué)習(xí)重點

  了解簡單的鴿巢問題,理解“總有”和“至少”的含義。

  (五)學(xué)習(xí)難點

  運用“鴿巢原理”解決相關(guān)的實際問題或解釋相關(guān)的現(xiàn)象。

  (六)配套資源

  實施資源:《鴿巢原理》名師教學(xué)課件

  二、學(xué)習(xí)設(shè)計

 。ㄒ唬┱n堂設(shè)計

  1.談話導(dǎo)入

  師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學(xué)任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學(xué)生再次證明。

  師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學(xué)習(xí)完這節(jié)課以后大家就知道了。

  2.問題探究

 。1)呈現(xiàn)問題,引出探究

  出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。

  師:“總有”是什么意思?“至少”有2支是什么意思?

  學(xué)生自由發(fā)言。

  預(yù)設(shè):一定有

  不少于兩只,可能是2支,也可能是多于2支。

  就是不能少于2支。

 。2)體驗探究,建立模型

  師:好的,看來大家已經(jīng)理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發(fā)現(xiàn)?

  小組活動:學(xué)生思考,擺放。

 、倜杜e法

  師:大部分同學(xué)都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。

  預(yù)設(shè)1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。

  師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?

 。ú灰欢ǎ部赡芊旁谄渌P筒里。)

  師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?

  預(yù)設(shè)2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。

  師:這種放法可以記作(3,1,0)

  師:這3支鉛筆一定要放在第一個筆筒里嗎?

 。ú灰欢ǎ

  師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。

  預(yù)設(shè)3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。

  師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?

  預(yù)設(shè):也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。

  預(yù)設(shè)4:還可以(2,1,1)

  或者(1,1,2)、(1,2,1)

  師:還有其它的放法嗎?

 。]有了)

  師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)

  師:這幾種放法如果用一句話概括可以怎樣說?

 。ㄑb得最多的筆筒里至少裝2支。)

  師:裝得最多的那個筆筒一定是第一個筆筒嗎?

  (不一定,哪個筆筒都有可能。)

  【設(shè)計意圖:在理解題目要求的基礎(chǔ)上,通過操作活動,用畫圖和數(shù)的分解來表示上述問題的結(jié)果,更直觀。再通過對“總有”“至少”的意思的單獨說明,讓學(xué)生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話。】

 、诩僭O(shè)法

  師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?

  預(yù)設(shè):先把鉛筆平均放,然后剩下的再放進其中一個筆筒里。

  師:“平均放”是什么意思?

  預(yù)設(shè):先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。

  師:為什么要先平均分?

  學(xué)生自由發(fā)言。

  引導(dǎo)小結(jié):因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。

  師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現(xiàn)總有一個筆筒里至少有2支鉛筆。

  師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。

  【設(shè)計意圖:讓學(xué)生自己通過觀察比較得出“平均分”的方法,將解題經(jīng)驗上升為理論水平,進一步強化方法、理清思路!

 。3)提升思維,建立模型

  ①加深感悟

  師:如果把5支筆放進4個筆筒里呢?大家討論討論。

  預(yù)設(shè):5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。

  師:把7支筆放進6個筆筒里呢?還用擺嗎?

  學(xué)生自由發(fā)言。

  師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?

  師:你發(fā)現(xiàn)了什么?

  預(yù)設(shè):我發(fā)現(xiàn)鉛筆的支數(shù)比筆筒數(shù)多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。

  師:你的發(fā)現(xiàn)和他一樣嗎?

  學(xué)生自由發(fā)言。

  師:你們太了不起了!

  師:難道這個規(guī)律只有在鉛筆的支數(shù)比筆筒數(shù)多1的情況下才成立嗎?你認為還有什么情況?

  練一練:

  師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”

  師:說說你的想法。

  師:由此看來,只要分的物體比抽屜的數(shù)量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理。【板書課題】

  介紹狄利克雷:

  師:鴿巢原理最先是由19世紀的德國數(shù)學(xué)家狄利克雷提出來應(yīng)用于解決問題的,后來人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。

 、诮⒛P

  出示例2:一位同學(xué)學(xué)完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?

  學(xué)生獨立思考、討論后匯報:

  師:怎樣用算式表示我們的想法呢?生答,板書如下。

  7÷3=2本……1本(2+1=3)

  師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。

  出示:

  把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  10÷3=3本……1本(3+1=4)

  師:觀察板書你有什么發(fā)現(xiàn)?

  預(yù)設(shè):我發(fā)現(xiàn)“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。

  師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。

  學(xué)生討論,匯報:

  8÷3=2……22+1=3

  8÷3=2……22+2=4

  師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進行研究、討論。

  師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關(guān)?

  預(yù)設(shè):我認為根“商”有關(guān),只要用“商+1”就可以得到。

  師:我們一起來看看是不是這樣(引導(dǎo)學(xué)生再觀察幾個算式)!果然是只要用“商+1”就可以了。

  引導(dǎo)總結(jié):我們把要分的物體數(shù)量看做a,抽屜的個數(shù)看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。

  鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。

  【設(shè)計意圖:借助直觀操作和假設(shè)法,將問題轉(zhuǎn)化為“有余數(shù)的除法”的.形式?梢允箤W(xué)生更好地理解“抽屜原理”的一般思路,經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應(yīng)用能力?疾槟繕1、2】

  3.鞏固練習(xí)

 。1)學(xué)習(xí)了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現(xiàn)在能解釋一下嗎?(出示課件)學(xué)生思考,討論。

 。2)第69頁的做一做第1、2題。

  4.全課總結(jié)

  師:通過這節(jié)的學(xué)習(xí),你有什么收獲?

  小結(jié):今天這節(jié)課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關(guān)鍵就是找準物體和抽屜,在一些復(fù)雜的題中,還需要我們?nèi)ブ圃斐閷稀?/p>

  (三)課時作業(yè)

  1.一個小組共有13名同學(xué),其中至少有幾名同學(xué)同一個月出生?

  答案:2名。

  解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】

  2.希望小學(xué)籃球興趣小組的同學(xué)中,最大的12歲,最小的6歲,最少從中挑選幾名學(xué)生,就一定能找到兩個學(xué)生年齡相同。

  答案:8名。

  解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】

  第二課時鴿巢原理

  中原區(qū)汝河新區(qū)小學(xué)師芳

  一、學(xué)習(xí)目標

  (一)學(xué)習(xí)內(nèi)容

  《義務(wù)教育教科書數(shù)學(xué)》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應(yīng)用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉(zhuǎn)化為“抽屜問題”。

  (二)核心能力

  在理解鴿巢原理的基礎(chǔ)上,利用轉(zhuǎn)化的思想,把新知轉(zhuǎn)化為鴿巢問題,提高分析和推理的能力。

 。ㄈ⿲W(xué)習(xí)目標

  1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉(zhuǎn)化思想。

  2.經(jīng)歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學(xué)習(xí)方法,提高分析和推理的能力。

 。ㄋ模⿲W(xué)習(xí)重點

  引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化為“抽屜原理”。

 。ㄎ澹⿲W(xué)習(xí)難點

  找出“抽屜”有幾個,再應(yīng)用“抽屜原理”進行反向推理。

  (六)配套資源

  實施資源:《鴿巢原理》名師教學(xué)課件

  二、學(xué)習(xí)設(shè)計

 。ㄒ唬┱n堂設(shè)計

  1.情境導(dǎo)入

  師:同學(xué)們,你們喜歡魔術(shù)嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學(xué)們?nèi)我馓舫?張。(讓5名學(xué)生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。

  師:神奇吧!你們想不想表演一個呢?

  師:現(xiàn)在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數(shù)相同呢?

  在學(xué)生抽的基礎(chǔ)上揭示課題。教師:這節(jié)課我們學(xué)習(xí)利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)

  2.探究新知

 。1)學(xué)習(xí)例3

 、俨孪

  出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?

  預(yù)設(shè):2個、3個、5個…

 、隍炞C

  師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。

  可以用表格進行整理,課件出示空白表格:

  學(xué)生獨立思考填表,小組交流。

  全班匯報。

  匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規(guī)律可循。

  課件匯總,思考:從這里你能發(fā)現(xiàn)什么?

  教師:通過驗證,說說你們得出什么結(jié)論。

  小結(jié):盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。

 、坌〗Y(jié)

  師:為什么球的個數(shù)一定要比抽屜數(shù)多?而且是多1呢?

  預(yù)設(shè):球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數(shù)多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數(shù)必須“至少”,所以摸3個球就夠了。

  師:說得好!運用學(xué)過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色”。這一結(jié)論是正確的。

  板書:只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色;蛘哒f只要物體數(shù)比抽屜數(shù)至少多1,就能保證有一個抽屜至少放2個物體。

 。2)引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“抽屜原理”。

  師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯(lián)系起來思考呢?

  思考:①摸球問題與“抽屜原理”有怎樣的聯(lián)系?

  ②應(yīng)該把什么看成“抽屜”?有幾個“抽屜”?要分別放的東西是什么?

  學(xué)生討論,匯報結(jié)果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉(zhuǎn)化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。

  從最特殊的情況想起,假設(shè)兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設(shè)至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應(yīng)拿出1×2+1=3個球,就能保證有2個球同色。

  結(jié)論:要保證摸出的球有兩個同色,摸出的球數(shù)至少要比抽屜數(shù)多1。

  3.鞏固練習(xí)

 。1)完成教材第70頁“做一做”第1題。

 。2)完成教材第70頁“做一做”第2題。

  4.課堂總結(jié)

  師:這節(jié)課你學(xué)到了什么知識?談?wù)勀愕氖斋@和體驗。

 。ㄈ┱n時作業(yè)

  1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?

  答案:5只。

  解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數(shù)比抽屜多1!究疾槟繕1、2】

  2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?

  答案:16條。

  解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數(shù)是:5×3+1=16!究疾槟繕1、2】

六年級數(shù)學(xué)鴿巢教案3

  教學(xué)目標:

  1.通過數(shù)學(xué)活動讓學(xué)生了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。

  2.結(jié)合具體的實際問題,通過實驗、觀察、分析、歸納等數(shù)學(xué)活動,讓學(xué)生通過獨立思考與合作交流等活動提高解決實際問題的能力。

  3.在主動參與數(shù)學(xué)活動的過程中,讓學(xué)生切實體會到探索的樂趣,讓學(xué)生切實體會到數(shù)學(xué)與生活的緊密結(jié)合。

  教學(xué)重點:

  理解鴿巢原理,掌握先平均分,再調(diào)整的方法。

  教學(xué)難點:

  理解總有至少的意義,理解至少數(shù)=商數(shù)+1。

  教學(xué)過程:

  一、游戲引入

  出示一副撲克牌。

  教師:今天老師要給大家表演一個魔術(shù)。取出大王和小王,還剩下52張牌,下面請5位同學(xué)上來,每人隨意抽一張,不管怎么抽,至少有2張牌是同花色的。同學(xué)們相信嗎?

  5位同學(xué)上臺,抽牌,亮牌,統(tǒng)計。

  教師:這類問題在數(shù)學(xué)上稱為鴿巢問題(板書)。因為52張撲克牌數(shù)量較大,為了方便研究,我們先來研究幾個數(shù)量較小的.同類問題。

  二、探索新知

  1.教學(xué)例1。

 。1)教師:把3支鉛筆放到2個鉛筆盒里,有哪些放法?請同桌二人為一組動手試一試。

  教師:誰來說一說結(jié)果?

  教師根據(jù)學(xué)生回答在黑板上畫圖表示兩種結(jié)果

  教師:不管怎么放,總有一個鉛筆盒里至少有2支鉛筆,這句話說得對嗎?

  教師:這句話里總有是什么意思?

  教師:這句話里至少有2支是什么意思?

 。2)教師:把4支鉛筆放到3個鉛筆盒里,有哪些放法?請4人為一組動手試一試。

  教師:誰來說一說結(jié)果?

  (教師根據(jù)學(xué)生回答在黑板上畫圖表示四種結(jié)果)

  引導(dǎo)學(xué)生仿照上例得出不管怎么放,總有一個鉛筆盒里至少有2支鉛筆。

  假設(shè)法(反證法)

  教師:前面我們是通過動手操作得出這一結(jié)論的,想一想,能不能找到一種更為直接的方法得到這個結(jié)論呢?小組討論一下。

  如果每個盒子里放1支鉛筆,最多放3支,剩下的1支不管放進哪一個盒子里,總有一個盒子里至少有2支鉛筆。首先通過平均分,余下1支,不管放在哪個盒子里,一定會出現(xiàn)總有一個盒子里至少有2支鉛筆。這就是平均分的方法。

六年級數(shù)學(xué)鴿巢教案4

  教學(xué)目標:

  1、知識與技能:聯(lián)系生活實際,引導(dǎo)學(xué)生認識一些常見的百分率,理解這些百分率的含義,并通過自主探究,掌握求百分率的一般方法,會正確地求生活中常見的百分率,依據(jù)分數(shù)與百分數(shù)應(yīng)用題的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的遷移類推能力和數(shù)學(xué)的應(yīng)用意識。

  2、過程與方法:引導(dǎo)學(xué)生經(jīng)歷探索、發(fā)現(xiàn)、交流等豐富多彩的數(shù)學(xué)活動過程,自主建構(gòu)知識,歸納出求百分率的方法。

  3、數(shù)學(xué)思考:使學(xué)生學(xué)會從數(shù)學(xué)的角度去認識世界,逐步形成“數(shù)學(xué)的思維”習(xí)慣。

  4、情感、態(tài)度與價值觀:讓學(xué)生體會百分率的用處及必要性,感受百分率來源于生活,體驗百分率的應(yīng)用價值。

  教學(xué)重點:

  理解百分率的含義,掌握求百分率的方法。

  教學(xué)難點:

  探究百分率的含義。

  教學(xué)用具:

  PPT課件

  教學(xué)過程:

  一、復(fù)習(xí)導(dǎo)入(8分)

  1、出示口算題,1分鐘,并校正題目。

  2、小結(jié)學(xué)生所提問題,并指名口頭列式。

  3、將問題中的“幾分之幾”改為“百分之幾”,引學(xué)生分析、解答。

  4、小結(jié):算法相同,但計算結(jié)果的表示方法不同。

  5、說明:我們把做對題目占總題數(shù)的百分之幾叫做正確率;那么做錯的題目占總題數(shù)的百分之幾叫做錯誤率。這些統(tǒng)稱為百分率。導(dǎo)入新課,揭示目標。

  6、口算比賽:(1分鐘)(見課件)

  7、根據(jù)口算情況,提出數(shù)學(xué)問題。

  (做對的題目占總題數(shù)的幾分之幾?做錯的題目占總題數(shù)的幾分之幾?)

  8、嘗試解答修改后的問題。

  9、比較:“求一個數(shù)是另一個數(shù)的幾分之幾”與“求一個數(shù)是另一個數(shù)的百分之幾”的問題在解法上有什么相同點和不同點?

  10、舉一些生活中的百分率,明確目標,進入新課的學(xué)習(xí):

  (1)知道達標率、發(fā)芽率、合格率等百分率的含義。

  (2)學(xué)習(xí)求百分率的方法,會解決求百分率的問題。

  二、設(shè)問導(dǎo)讀(9分)

  1、說明達標率的含義。

  2、板書達標率的計算公式,并說明除法為什么寫成分數(shù)的形式?

  3、組織學(xué)生以4人小組討論。

  4、巡回指導(dǎo)書寫格式。閱讀例題,思考下面的問題

  (1)什么叫做達標率?

  (2)怎樣計算達標率?

  (3)思考:公式中為什么要“×100%”呢?

  (4)嘗試計算例1的達標率。

  三、質(zhì)疑探究(5分)

  1、在展示臺上展示學(xué)生寫出的百分率計算公式。

  2、要求學(xué)生認真計算,并對學(xué)生進行思想教育。

  1、生活中還有哪些百分率?它們的含義是什么?怎樣求這些百分率?

  2、求例1(2)中的`發(fā)芽率。

  四、鞏固練習(xí)(14分)

  1、指名口答,組織集體評議,再次引學(xué)生鞏固百分率的含義。

  2、對每一道題都要讓學(xué)生分析、理解透徹,并找出錯誤原因。

  3、出示問題,指導(dǎo)學(xué)生書寫格式,并強調(diào)

  4、解決問題要注意:看清求什么率?找出對應(yīng)的量。

  5、引學(xué)生比較、發(fā)現(xiàn):這些百分率和100%比較,大小怎樣?哪些百分率可能超過100%?

  6、引學(xué)生觀察、發(fā)現(xiàn):出勤率+缺勤率=1.

  五、加強鞏固

  1、說說下面百分率各表示什么意思。(1顆星)

  (1)學(xué)校栽了200棵樹苗,成活率是90%。

  (2)六(1)班同學(xué)的近視率達14%。

  (3)海水的出鹽率是20%。

  2、判斷。(2顆星)

  (1)學(xué)校上學(xué)期種的105棵樹苗現(xiàn)在全部成活,這批樹苗的成活率為105%。( )

  (2)六年級共有54名學(xué)生,今天全部到校,今天六年級學(xué)生的出勤率為54%。( )

  (3)把25克鹽放入100克水中,鹽水的含鹽率為25%。

  (4)一批零件的合格率為85%,那么這批零件的不合格率一定是15%。

  5、工廠加工了105個零件,合格率達100%,則這批零件有100個合格。

  3、解決問題(3顆星)

  (1)我班有27名同學(xué),上學(xué)期期末測試中,有24人優(yōu)秀,那么我們班成績的優(yōu)秀率是多少?27名同學(xué)全部合格,合格率是多少?

  (2)六(1)班今天有48人到校,有2人缺席,求出勤率。

  (3)要求,以2人小組互查,每人練習(xí)一道題,口頭列式。

  1、王大爺在荒山上植樹,一共植了125棵,有115棵成活。這批樹的成活率約是多少?

  (4)王師傅加工的300個零件中有298個合格,合格率是多少?

  課堂總結(jié):

  (1分)突出“關(guān)鍵點”。談?wù)劚竟?jié)課的收獲。

【六年級數(shù)學(xué)鴿巢教案】相關(guān)文章:

六年級數(shù)學(xué)鴿巢教案01-04

數(shù)學(xué)廣角-鴿巢原理教學(xué)反思11-02

小學(xué)六年級下冊數(shù)學(xué)《數(shù)學(xué)廣角──鴿巢問題》教案10-10

《鴿巢問題》的教學(xué)反思11-05

美術(shù)教案《和平鴿》05-23

巢軒(巢軒)10-26

巢飲(巢飲)10-25

鴿肉10-26

賽鴿12-07