七年級數(shù)學(xué)教案【薦】
作為一名老師,時常會需要準備好教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么問題來了,教案應(yīng)該怎么寫?以下是小編為大家整理的七年級數(shù)學(xué)教案,希望能夠幫助到大家。
七年級數(shù)學(xué)教案1
內(nèi)容:整式的乘法—單項式乘以多項式 P58-59
課型:新授 時間:
學(xué)習(xí)目標:
1、在具體情景中,了解單項式和多項式相乘的意義。
2、在通過學(xué)生活動中,理解單項式和多項式相乘的法則,會用它們進行計算。
3、培養(yǎng)學(xué)生有條理的思考和表達能力。
學(xué)習(xí)重點:單項式乘以多項式的法則
學(xué)習(xí)難點:對法則的理解
學(xué)習(xí)過程
1.學(xué)習(xí)準備
1.敘述單項式乘以單項式的法則
2.計算
(1)(- a2b) ?(2ab)3=
(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)
3、舉例說明乘法分配律的應(yīng)用。
2.合作探究
(一)獨立思考,解決問題
1、 問題: 一個施工隊修筑一條路面寬為n m的公路,第一天修筑 a m長,第二天修筑長 b m,第三天修筑長 c m,3天工修筑路面的面積是多少?
結(jié)合圖形,完成填空。
算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的寬為bm,所以3
天共修筑路面 m2.
算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面 m2.
因此,有 = 。
3.你能用字母表示乘法分配律嗎?
4.你能嘗試單項式乘以多項式的法則嗎?
(二)師生探究,合作交流
1、例3 計算:
(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)
2、練一練
。1)5x(3x+4) (2) (5a2? a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)學(xué)習(xí)
對照學(xué)習(xí)目標,通過預(yù)習(xí),你覺得自己有哪些方面的收獲?有什么疑惑?
(四)自我測試
1、教科書P59 練習(xí) 3,結(jié)合解題,單項式乘以多項式的幾何意義。
2、判斷題
(1)-2a(3a-4b) =-6a2-8ab ( )
(2) (3x2-xy-1) ? x =x3 -x2y-x ( )
(3)m2- (1- m) = m2- - m ( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的.值等于 ( )
A. -1 B. 0 C. 1 D. 無法確定
4、計算(20xx 賀州中考)
。-2a)?( a3 -1) =
5、(3m)2(m2+mn-n2)=
(五)應(yīng)用拓展
1、計算
(1)2a(9a2-2a+3)-(3a2) ?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2n cm,求此梯形的面積。
3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?
七年級數(shù)學(xué)教案2
教學(xué)目標:
1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點靈活地選擇解法。
2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質(zhì)在解方程中的作用,學(xué)會通過觀察,結(jié)合方程的特點選擇合理的思考方向進行新知識探索。
3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗“化歸”的思想。
教學(xué)重難點:
重點:解一元一次方程的基本步驟和方法。
難點:含有分母的一元一次方程的解題方法。
教學(xué)過程:
一、新課導(dǎo)入:
請同學(xué)們和老師一起解方程:
并回答:解一元一次方程的一般步驟和最終的目的是什么?
二、講授新課
請給同學(xué)們介紹紙草書(P95)。
問題:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個
數(shù)是多少?
并引入讓同學(xué)運用設(shè)未知數(shù)的方法,列出相應(yīng)的方程。
并回答:這個方程和我們以前學(xué)習(xí)的方程有什么不同?
同學(xué)們和老師一起完成解上述方程,并引入去分母。
例1、
例2、
活動:同學(xué)們,解一元一次方程的步驟有哪些?要注意哪些?
看一看你會不會錯:
(1)解方程:
(2)解方程:
典型例題:解方程:
想一想:去分母時要注意什么問題?
(1)方程兩邊每一項都要乘以各分母的最小公倍數(shù)
(2)去分母后如分子中含有兩項,應(yīng)將該分子添上括號
選一選:
練一練:當m為何值時,整式和的值相等?
議一議:如何解方程:
注意區(qū)別:
1、把分母中的小數(shù)化為整數(shù)是利用分數(shù)的基本性質(zhì),是對單一的一個分數(shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的'左右兩邊同乘或除以一個不為0的數(shù)。
2、而去分母則是根據(jù)等式性質(zhì)2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分數(shù)。
課堂小結(jié):
。1)怎樣去分母?應(yīng)在方程的左右兩邊都乘以各分母的最小公倍數(shù)。
有沒有疑問:不是最小公倍數(shù)行不行?
。2)去分母的依據(jù)是什么?
等式性質(zhì)2
(3)去分母的注意點是什么?
1、去分母時等式兩邊各項都要乘以最小公倍數(shù),不可以漏乘。
2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應(yīng)加括號。
。4)解一元一次方程的一般步驟:
布置作業(yè):P98,習(xí)題3.3第3題
補充作業(yè):解方程:
(1)
。2)
板書設(shè)計:
教學(xué)反思:
七年級數(shù)學(xué)教案3
我今天說課的課題是人教版義務(wù)教育課程標準實驗教科書七年級數(shù)學(xué)上冊第二章第1節(jié)《整式》第一課時“單項式”。下面我從:教材的分析、教法與學(xué)法及教學(xué)手段、教學(xué)過程、板書設(shè)計四部分來說這一節(jié)課,其中,教學(xué)過程分為:創(chuàng)設(shè)情境導(dǎo)入新課、新課講解、小結(jié)作業(yè)三部分;整個過程是先由實際問題引入新課,讓學(xué)生自然走入文本.合作交流去感受知識獲取的過程,并且運用所學(xué)的知識解決相關(guān)的問題.
教材分析
1、教材地位與作用。
就本節(jié)課而言,著重闡述了兩個方面,一是因式分解的概念,二是與整式乘法的互逆關(guān)系。它是繼整式乘法的基礎(chǔ)上來討論因式分解概念,繼而,通過探究與整式乘法的關(guān)系,來尋求因式分解的原理。這一思想實質(zhì)貫穿后繼學(xué)習(xí)的各種因式分解方法。通過本節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)因式分解作好了充分的準備。因此,它起到了承上啟下作用。
2、教學(xué)目標。
根據(jù)單項式這一節(jié)課的內(nèi)容,對于掌握各種單項式的系數(shù)和次數(shù)方法,乃至整個代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標:
(一)知識目標:
1.理解單項式及單項式系數(shù)、次數(shù)的概念。
2.會準確迅速地確定一個單項式的系數(shù)和次數(shù)。
。ǘ┠芰δ繕耍
3.初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。
4.通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流能力。
。ㄈ┣楦心繕耍
1.通過參與對單項式概念的探究活動,提高學(xué)習(xí)數(shù)學(xué)的興趣。
2.培養(yǎng)學(xué)生積極主動參與的意識,使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。
3、教學(xué)重點與難點。
本節(jié)課理解單項式的概念及組成是學(xué)習(xí)本節(jié)單項式的關(guān)鍵,而學(xué)生由數(shù)到式的變形是一個由質(zhì)到量變化的抽向思維。學(xué)生對新概念的形成有一定的障礙。因此我將本課的學(xué)習(xí)重點、難點確定為:
重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準確迅速地確定一個單項式的系數(shù)和次數(shù)。
難點:單項式概念的建立。
2/教法與學(xué)法及教學(xué)手段。
教法:為讓學(xué)生體驗單項式概念產(chǎn)生的過程;以及概念的形成和同化相結(jié)合,促進學(xué)生對單項式概念的理解;同時讓學(xué)生主動暴露思維過程,及時得到信息的反饋。我采用先學(xué)后導(dǎo)-自主合作-問題評價教學(xué)。
學(xué)法:針對教法,在教學(xué)的過程中引導(dǎo)學(xué)生自主的學(xué)習(xí):讓學(xué)生去親身體驗單向式形成的過程,使學(xué)生的認識知識、感受知識,學(xué)生在活動的過程中積極參與,主動獲取知識,體現(xiàn)了以學(xué)生為主體的新教學(xué)理念,結(jié)合教材內(nèi)容,讓學(xué)生“自主探索、合作交流”。通過同學(xué)之間相互講解、演示、操作等方法讓學(xué)生開動腦筋,互相討論,找出解決問題的方法。使學(xué)生逐步地形成技能技巧,從而獲得能力。
教學(xué)手段:利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣,電腦軟件的交互性,可以很好地體現(xiàn)教師在教學(xué)過程中的思路和策略。
教學(xué)過程
本節(jié)課,一共設(shè)以下幾個環(huán)節(jié)
第一環(huán)節(jié),設(shè)置實際問題,激發(fā)學(xué)習(xí)興趣:
興趣是最好的老師,可以激發(fā)情感,喚起某種動機,從而引導(dǎo)學(xué)生成為學(xué)習(xí)的主人。若能利用短短幾分鐘時間,在剛開始就激發(fā)學(xué)生的興趣,這正是老師追求的一個目標。所以這個環(huán)節(jié)我設(shè)置以下的`問題:青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答問題:
列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
。ㄗ寣W(xué)生思考、利用已有的學(xué)習(xí)經(jīng)驗輕松解答,對整節(jié)的學(xué)習(xí)也創(chuàng)設(shè)了良好的情緒狀態(tài)。)數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際,這是新課程標準所賦予的任務(wù)。讓學(xué)生列代數(shù)式不僅復(fù)習(xí)前面的知識,更是為下面給出單項式埋下伏筆,同時使學(xué)生受到較好的思想品德教育。
第二環(huán)節(jié),以舊探新,引出課題(分2部分)
單項式的概念,借助于學(xué)生已有的能用字母表示是數(shù)的基礎(chǔ),給學(xué)生提供一些問題背景,同時給學(xué)生留有充分思考的空間,。這個環(huán)節(jié)圍繞幾個問題展開,在積極的狀態(tài)下,用觀察-猜想-驗證-自主學(xué)習(xí)的方法,找到新知生長點,把數(shù)的有關(guān)知識正遷移到式,由學(xué)生自己給出單項式的名稱,引出課題,顯得順理成章。
利用多媒體課件,依次出示,讓學(xué)生回答。
1.(回顧舊知)計算:
。1).邊長為a的正方體的表面積為(),體積為()。
。2).鉛筆的單價是x元,圓珠筆的單價是鉛筆單價的2.5倍,圓珠筆的單價是()元。
。3).一輛汽車的速度是v千米/時,它t小時行駛的路程為()。
。4).數(shù)n的相反數(shù)是()。
給學(xué)生一定的時間思考,在學(xué)生原有的知識結(jié)構(gòu)建成的基礎(chǔ)上,得出答案.符合學(xué)生的認知規(guī)律.
2.(走入文本,自主學(xué)習(xí))我們看看列出的式子有什么特點?對此大家都有一定的想法,也許一樣,也許不一樣.其實在我們的教材中給出了他們的說法,這樣大家可以借助教材55頁第二自然段-四自然段內(nèi)容來驗證一下.大家先獨立閱讀學(xué)習(xí),然后前后每4人為一組相互交流,體驗自己的收獲,認識不足的地方大家可以相互彌補.這一設(shè)計,主要目的是以教材為中心為學(xué)生營造自主合作學(xué)習(xí)的氛圍,形成新的學(xué)習(xí)方式.符合數(shù)學(xué)課程標準中指出:主動參與特定的數(shù)學(xué)活動,通過觀察,探索獲得數(shù)學(xué)的知識經(jīng)驗.”實現(xiàn)培養(yǎng)學(xué)生積極主動參與的意識,使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。這個情感目標.同時對于學(xué)生的收獲及時地整理,使獲得成就感.
第三環(huán)節(jié)初步應(yīng)用,鞏固新知:趁此時學(xué)生處在一個積極思維的狀態(tài),教師給出練習(xí)
1.判斷下列各代數(shù)式哪些是單項式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;
(6)-xy2;(7)-5。
△這安排是為通過嘗試教學(xué),引導(dǎo)學(xué)生主動探究,造求學(xué)生自主學(xué)習(xí)的積極勢態(tài),通過一定的練習(xí),達到知覺水平上的運用,加深學(xué)生對單項式概念的理解,從而突出本節(jié)課的重點,同時尋求認識單項式的方法,為下一個環(huán)節(jié)例題的講解作了個鋪墊,降低了本節(jié)課的難點。
第四環(huán)節(jié)范例教學(xué),練習(xí)反饋:
范例學(xué)習(xí)
用單項式填空,并指出它們的系數(shù)和次數(shù):
。1)每包書有12冊,n包書有()冊;
。2)底邊長為a,高為h的三角形的面積();
。3)一個長方體的長和寬都是a,高是h,它的體積是();
(4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價為()元;
。ǎ担┮粋長方形的長是0.9,寬是a,這個長方形的面積是().
(給學(xué)生一定的時間思考討論,教師適當引導(dǎo).)
1.為了進一步淡化難點,完全放手讓學(xué)生自主進行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動活潑、主動求知所富有的個性,使學(xué)生真正成為學(xué)習(xí)的主體,我馬上讓學(xué)生模仿解題嘗試練習(xí):
例1:判斷下列各代數(shù)式是否是單項式。如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù)。
、賦+1;②;③πr2;④-a2b。
下面各題的判斷是否正確?
、伲7xy2的系數(shù)是7;②-x2y3與x3沒有系數(shù);③-ab3c2的次數(shù)是0+3+2;
、埽璦3的系數(shù)是-1;⑤-32x2y3的次數(shù)是7;⑥πr2h的系數(shù)是。
3、填空:
(1)單項式-5y的系數(shù)是_____,次數(shù)是_____
(2)單項式a3b的系數(shù)是_____,次數(shù)是_____
(3)單項式的系數(shù)是_____,次數(shù)是____
(4)單項式-5πR2的系數(shù)是___,次數(shù)是___
學(xué)生接受單項式的定義不是很難,但是做到判斷無誤卻很困難,需要通過練習(xí),反復(fù)強調(diào)單項式判斷標準及單項式中的系數(shù)和次數(shù)的不同和概念中要求,比如只有字母的系數(shù)的不是1就是-1,單獨一個字母的指數(shù)是1等知識出現(xiàn)的思維錯覺必須學(xué)生通過甄別、理解,逐步提高準確度和熟練度.同時及時總結(jié)提升經(jīng)驗.
第五環(huán)節(jié)知識整理,歸納小結(jié):
讓學(xué)生形成善于歸納、總結(jié)的學(xué)習(xí)方式。當學(xué)生把所獲得的數(shù)學(xué)內(nèi)容與原有的認知結(jié)構(gòu)建立起密切的多方面的聯(lián)系時,才能更有效地掌握數(shù)學(xué)內(nèi)容。能夠提高學(xué)生的歸納總結(jié)能力和語言表達能力.因此,學(xué)生形成歸納總結(jié)的學(xué)習(xí)方式是必須的。
本節(jié)課是研究整式的起始課,它是進一步學(xué)習(xí)多項式的基礎(chǔ),因此對單項式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。為突出重點,突破難點,教學(xué)中要加強直觀性,即為學(xué)生提供足夠的感知材料,豐富學(xué)生的感性認識,幫助學(xué)生認識概念,同時也要注重分析,亦即在剖析單項式結(jié)構(gòu)時,借助反例練習(xí),抓住概念易混淆處和判斷易出錯處,強化認識,幫助學(xué)生理解單項式系數(shù)、次數(shù),為進一步學(xué)習(xí)新知做好鋪墊。
針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、認識問題能力較弱的特點,教學(xué)時將以啟發(fā)為主,同時輔之以討論、練習(xí)、合作交流等學(xué)習(xí)活動,達到掌握知識的目的,并逐步培養(yǎng)起學(xué)生觀察、分析、抽象、概括的能力,為進一步學(xué)習(xí)同類項打下堅實的基礎(chǔ)。
七年級數(shù)學(xué)教案4
一、教材分析
1、教材的內(nèi)容:本節(jié)課是人教版七年級下冊第五章第一節(jié)的第一課時
2、教材的地位和作用:平面內(nèi)兩條直線的位置關(guān)系是“空間與圖形”所要研究的基本問題,這些內(nèi)容學(xué)生在前兩個學(xué)段已經(jīng)有所接觸,本章在學(xué)生已有知識和經(jīng)驗的基礎(chǔ)上,繼續(xù)研究平面內(nèi)兩條直線的位置關(guān)系,首先研究相交的兩條直線,這是后面學(xué)習(xí)垂直相交的必要基礎(chǔ)也為后面學(xué)面直角坐標系奠定基石,因此本節(jié)課具有承前啟后的重要作用
3、教學(xué)的重點、難點:
重點:鄰補角、對頂角的概念,對頂角的性質(zhì)和應(yīng)用。
難點:理解對頂角性質(zhì)的探索
(確定重難點的依據(jù):本節(jié)的學(xué)習(xí)目的是研究兩條相交直線產(chǎn)生的四個角的關(guān)系,因此將鄰補角、對頂角的概念、性質(zhì)以及應(yīng)用作為本節(jié)的重點。同學(xué)們剛剛開始接觸幾何,對推理說理不習(xí)慣也不熟悉,所以將理解對頂角相等的性質(zhì)作為難點。)
4、教學(xué)目標:
A:知識與技能目標
(1).理解對頂角和鄰補角的概念,能在圖形中辨認.
(2).掌握對頂角相等的性質(zhì)和它的推證過程
(3).會用對頂角的性質(zhì)進行有關(guān)的簡單推理和計算.
B:過程與方法目標
(1).通過觀察、操作、探究、猜想、思考、交流、歸納、推理等培養(yǎng)學(xué)生的推理能力和有條理的表達能力,培養(yǎng)操作能力、動手能力。
(2).體會具體到抽象再到具體的思想方法.
C:情感、態(tài)度與價值目標
(1).感受圖形中和諧美、對稱美.
(2).感受合作交流帶來的成功感,樹立自信心.
(3).感受數(shù)學(xué)應(yīng)用的廣泛性,使學(xué)生更加熱愛數(shù)學(xué)
二、學(xué)情分析:
在此之前,學(xué)生已經(jīng)學(xué)習(xí)了圖形的初步認識、對相交線和平行線有了直觀的感性認識,且對互補和互余有了清楚的了解,在此基礎(chǔ)上來學(xué)習(xí)鄰補角和對頂角,符合學(xué)生的認知規(guī)律,讓學(xué)生對新知識的應(yīng)用充滿好奇與期待.
三、教法和學(xué)法:
教法:
葉圣陶先生倡導(dǎo):解放學(xué)生的手,解放學(xué)生的腦,解放學(xué)生的時間.根據(jù)這一思想及我校初一學(xué)生活潑好動的特點,我采取啟發(fā)式教學(xué)、探究式教學(xué)及多媒體輔助教學(xué)相結(jié)合的方法.
學(xué)法:以學(xué)生分組實踐、自主探究、合作交流為主要形式的'探究式學(xué)習(xí)方法.
四、教學(xué)過程:
1課前準備:課件,剪刀,紙片,相交線模型
2教學(xué)過程:設(shè)置以下六個環(huán)節(jié)
環(huán)節(jié)一:情景屋(創(chuàng)設(shè)情景,激發(fā)學(xué)習(xí)動機)
請學(xué)生欣賞觀察圖片,圖片中有大橋上的鋼梁和鋼索,窗戶的窗格都給我們以相交線平行線的形象,讓學(xué)生感受到相交線平行線在我們生活中有著廣泛的應(yīng)用,由此產(chǎn)生研究它們了解它們的興趣和欲望,適時的給出本章課題:相交線和平行線
環(huán)節(jié)二:問題苑(合作交流,解釋發(fā)現(xiàn))
通過一些問題的設(shè)置,激發(fā)學(xué)生探究的欲望,具體操作:
(1):動手嘗試:剪紙片,感知剪刀所形成的角在剪紙過程中的變化
(2):給出問題,由剪刀這個實物抽象出幾何模型——兩條直線相交。
(讓學(xué)生充分的感知到數(shù)學(xué)來源于生活,符合初中學(xué)生的認識規(guī)律和興趣愛好)
(3):分析研究此模型:
設(shè)置以下一系列問題:
A、兩直線相交構(gòu)成的4個角兩兩相配共能組成幾對?(6對)
B、對各對角進行分析,首先從位置上去分析————結(jié)論:可把這六對角分成兩大類,一類為哪些角?——特點?——它們有一條公共邊,它們的另一邊互為反向延長線——引出概念——鄰補角。
另一類是哪些角?———特點?——它們的兩邊互為反向延長線——引出概念——對頂角
C、再從大小上進行分析——量一量——結(jié)論:鄰補角互補、對頂角相等。
D、你能闡述它們互補和相等的理由嗎?
(一堂好課,是由一系列的真問題組成的,本環(huán)節(jié)在老師的引導(dǎo)下,由學(xué)生自由的發(fā)揮,通過觀察分析,交流討論一步一步的解決本節(jié)課的重點和難點,學(xué)生通過自己探索獲得的知識才是自己的知識,讓學(xué)生在此過程中學(xué)會學(xué)習(xí),達到教是為了不教的目的)
環(huán)節(jié)三:快樂房(大膽創(chuàng)設(shè),感悟變換)
(設(shè)置見投影,讓學(xué)生判斷形成的兩個角是否為鄰補角,這一變換讓學(xué)生充滿興趣,此時一定讓學(xué)生用鄰補角的特點去檢驗,達到知識的正向遷移,并理解鄰補角和補角的關(guān)系)
環(huán)節(jié)四:實例庫(拓展應(yīng)用,升華提高)
例子1:是一組不同形式的角,判斷是否為對頂角,此題的目的是鞏固對頂角的概念,培養(yǎng)學(xué)生的識圖能力
例子2:例子2是用對頂角和鄰補角的性質(zhì)進行簡單的計算,在這里設(shè)置了一組變式題,而且變式題目不是教師直接給出,而是啟發(fā)學(xué)生自己編,讓學(xué)生過了一把編導(dǎo)的癮,學(xué)生一定非常的開心,這樣可以活躍課堂氣氛,提高學(xué)生的思維能力
(一方面鞏固了對頂角的性質(zhì);另一方面說明幾何里的計算題,需要用到圖形的幾何性質(zhì),因此,要有根有據(jù)地計算.例題放手讓學(xué)生自己解決,比教師單純地講解效果會更好.盡管學(xué)生書寫格式不如課本上的規(guī)范,但通過集體講評糾正后,學(xué)生印象會更深刻).
最后安排一個腦筋急轉(zhuǎn)彎:見投影
(讓學(xué)生始終對課堂充滿熱情,通過此練習(xí),體會到數(shù)學(xué)來自于生活又用于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣和熱情)
環(huán)節(jié)五:點金帚(學(xué)后反思感悟收獲)
通過本堂課的探究
我經(jīng)歷了......
我體會到......
我感受到......
(學(xué)生暢所欲言,在“以生為本”的民主氛圍中培養(yǎng)學(xué)生歸納、概括能力和語言表達能力;同時引導(dǎo)學(xué)生反思探究過程,幫助學(xué)生肯定自我,欣賞他人,同時把本節(jié)課的內(nèi)容形成知識體系.)
角的名稱
特征
性質(zhì)
相同點
不同點
對頂角
、賰蓷l直線相交而成的角
、谟幸粋公共頂點
、蹧]有公共邊
對頂角相等
都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現(xiàn)。
對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個角的對頂角有一個,而一個角的鄰補角有兩個
鄰補角
、賰蓷l直線相交面成的角
、谟幸粋公共頂點
、塾幸粭l公共邊
鄰補角互補
環(huán)節(jié)六:沉思閣(課后延伸張揚個性)
此為課后作業(yè):
(適當增加利用對頂角相等解決一些說理的題目,既讓學(xué)生感受到對頂角相等這個性質(zhì)在解題中的獨特魅力,又為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ).)
五、教學(xué)設(shè)計說明:
設(shè)計理念:面向全體學(xué)生,實現(xiàn):
——人人學(xué)有價值的數(shù)學(xué)
——人人都能獲得必需的數(shù)學(xué)
——不同的人在數(shù)學(xué)上得到不同的發(fā)展
過程設(shè)計:學(xué)生親身經(jīng)歷從現(xiàn)實生活的圖形中提出數(shù)學(xué)問題,并抽象其蘊涵的數(shù)學(xué)本質(zhì)(相交直線),最后回歸生活去運用所學(xué)知識的全過程。
設(shè)計目的:讓學(xué)生帶著興趣、帶著問題走進課堂,帶著新的問題、帶著高漲的熱情離開課堂,進行不斷的探究。
七年級數(shù)學(xué)教案5
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.
2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想
學(xué)習(xí)重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等.( )
2.兩條直線被第三條直線所截,如果內(nèi)錯角互補,那么同旁內(nèi)角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.
五、作業(yè)課本15頁-16頁練習(xí)的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學(xué)習(xí)重點:直線平行的條件的應(yīng)用.
學(xué)習(xí)難點:選取適當判定直線平行的方法進行說理是重點也是難點.
一、學(xué)習(xí)過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的`是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級數(shù)學(xué)教案6
學(xué)生很容易解決,相互交流,自我評價,增強學(xué)生的主人翁意識。
3、電腦演示:
如下圖,第一行的圖形繞虛線旋轉(zhuǎn)一周,便能形成第二行的某個幾何體,用線連一連。
由平面圖形動成立體圖形,由靜態(tài)到動態(tài),讓學(xué)生感受到幾何圖形的奇妙無窮,更加激發(fā)他們的好奇心和探索欲望。
四、做一做(實踐)
1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標準。
2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。
五、試一試(探索)
課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學(xué)生探索的欲望。
教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體
1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。
2、再讓學(xué)生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。
3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。
學(xué)生在探索過程中,可能會遇到困難,師生可以共同參與,適當點撥,歸納出歐拉公式,并介紹歐拉這個人,進行科學(xué)探索精神教育,充分挖掘?qū)W生的潛能,讓學(xué)生積極參與集體探討,建立良好的相互了解的.師生關(guān)系。
六、小結(jié),布置課后作業(yè):
1、用六根火柴:①最多可以拼出幾個邊長相等的三角形?②最多可以拼出如圖所示的三角形幾個?
2、針對我校電腦室對全體學(xué)生開放的優(yōu)勢,教師告訴學(xué)生網(wǎng)址,讓學(xué)生從網(wǎng)上學(xué)習(xí)正多面體的制作。
讓學(xué)生去動手操作,根據(jù)自身的能力,充分發(fā)揮創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神,使每個學(xué)生都能得到充分發(fā)展。
七年級數(shù)學(xué)教案7
教學(xué)目標:
1.能夠在實際情境中,抽象概括出所要研究的數(shù)學(xué)問題,增強學(xué)生的數(shù)感符號感。
2.在已有的對冪的知識的了解基礎(chǔ)之上,通過與同伴合作,經(jīng)歷探索同底數(shù)冪乘法運算性質(zhì)
過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題,感受數(shù)學(xué)與現(xiàn)實生活的密切聯(lián)系,
增強學(xué)生的'數(shù)學(xué)應(yīng)用意識,訓(xùn)練他們養(yǎng)成學(xué)會分析問題、解決問題的良好習(xí)慣。
教學(xué)重點:
同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題。
教學(xué)過程:
一、復(fù)習(xí)回顧
活動內(nèi)容:復(fù)習(xí)七年級上冊數(shù)學(xué)課本中介紹的有關(guān)乘方運算知識:
二、情境引入
活動內(nèi)容:以課本上有趣的天文知識為引例,讓學(xué)生從中抽象出簡單的數(shù)學(xué)模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學(xué)生進行獨立思考,也可采用小組合作交流的形式,結(jié)合學(xué)生現(xiàn)有的有關(guān)冪的意義的知識,進行推導(dǎo)嘗試,力爭獨立得出結(jié)論。
三、講授新課
1.利用乘方的意義,提問學(xué)生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結(jié)合律)=105.
2.引導(dǎo)學(xué)生建立冪的運算法則:
將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數(shù),則有即am·an=am+n.
3.引導(dǎo)學(xué)生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關(guān)系?
(3)等號兩邊的指數(shù)有什么關(guān)系?(4)公式中的底數(shù)a可以表示什么
(5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?
要求學(xué)生敘述這個法則,并強調(diào)冪的底數(shù)必須相同,相乘時指數(shù)才能相加.
四、應(yīng)用提高
活動內(nèi)容:
1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學(xué)會處理問題的方法。
4.處理隨堂練習(xí)(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
五、拓展延伸
活動內(nèi)容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
。5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
六、課堂小結(jié)
活動內(nèi)容:師生互相交流總結(jié)本節(jié)課上應(yīng)該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學(xué)生掌握不夠牢固的知識進行強調(diào)與補充,學(xué)生也可談一談個人的學(xué)習(xí)感受。
七、布置作業(yè)
1.請你根據(jù)本節(jié)課學(xué)習(xí),把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習(xí)題1.4中所有習(xí)題。
七年級數(shù)學(xué)教案8
教學(xué)目標
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;
2, 了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數(shù)的概念
教學(xué)過程
探索新知
在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的.數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),”。
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導(dǎo)學(xué)生去體會
練一練
1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號:。
思考:
問題1:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
創(chuàng)新探究
問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當?shù)闹笇?dǎo),使學(xué)生了解分類的標準不一樣時,分類的結(jié)果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結(jié)與作業(yè)
到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
七年級數(shù)學(xué)教案9
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習(xí)
1、教科書第3頁練習(xí)1、2。
2、補充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
。3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)。教科書第3頁,習(xí)題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學(xué)目的
通過天平實驗,讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的.值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學(xué)過程
一、引入
上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
七年級數(shù)學(xué)教案10
教材分析:
本節(jié)課是新教材幾何教學(xué)的第一節(jié)課,通過學(xué)生身邊的現(xiàn)實生活中的實物,讓學(xué)生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學(xué)生學(xué)習(xí)幾何的熱情.。無需對具體定義的深刻理解,只要學(xué)生能用自己的語言描述它們的某些特征。
教學(xué)目標:
知識目標:
在具體情境中認識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認識點、線、面、體,初步感受點、線、面、體之間的關(guān)系。
能力目標:
讓學(xué)生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學(xué)生抽象、辨別能力。
情感目標:
感受圖形世界的`豐富多彩,激發(fā)學(xué)習(xí)幾何的熱情。
教學(xué)重點:
經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關(guān)系。
教學(xué)難點:
抽象能力的培養(yǎng),學(xué)習(xí)熱情的激發(fā)。
教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)、師生互動。
教學(xué)準備:
多媒體課件、學(xué)生身邊的實物等。
教學(xué)過程:
合作學(xué)習(xí)
問題1:
我們已學(xué)過的或認得的存有哪些幾何體?
(學(xué)生討論、交流)
問題2:
你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?
。▽W(xué)生討論、舉例)
課本中P162中的合作學(xué)習(xí)
。ń處熆啥嗯e一些平面與曲面的實例讓學(xué)生感受、辨別)
特別指出:
數(shù)學(xué)中的平面是可以無限伸展的
議一論
P163課內(nèi)練習(xí)1
P163課內(nèi)練習(xí)2
師生討論指出:
線與線相交成點,面與面相交成線。
想一想:
觀察下圖,你發(fā)現(xiàn)什么?
師生討論
議一議:
日常生活中的哪些事物給人以點、線的形象。
指出:
日常生活中點與面只是相對的一個感念。如:
在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。
活動探究:
P164課內(nèi)練習(xí)3
應(yīng)用拓展:
請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構(gòu)件,盡可能多地構(gòu)思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構(gòu)思出其他的圖形嗎?比一比,看誰想得多。
議一議:
本節(jié)課有什么收獲?
布置作業(yè)
七年級數(shù)學(xué)教案11
教學(xué)目標
1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點和難點
重點:列代數(shù)式.
難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
1?用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;( -7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?
二、講授新課
例1 用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2 用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的 與乙數(shù)的 的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的`差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?
例3 用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n; (2)5m+2?
(這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?
例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?
分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)
例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個; (2)( m)m個?
三、課堂練習(xí)
1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、師生共同小結(jié)
首先,請學(xué)生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準備?要求學(xué)生一定要牢固掌握?
五、作業(yè)
1?用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2?已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.
當圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:
=99a+b(cm)
七年級數(shù)學(xué)教案12
第一章 有理數(shù)
單元教學(xué)內(nèi)容
1.本單元結(jié)合學(xué)生的生活經(jīng)驗,列舉了學(xué)生熟悉的用正、負數(shù)表示的實例,?從擴充運算的角度引入負數(shù),然后再指出可以用正、負數(shù)表示現(xiàn)實生活中具有相反意義的量,使學(xué)生感受到負數(shù)的引入是來自實際生活的需要,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系.
引入正、負數(shù)概念之后,接著給出正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)集合及整數(shù)、分數(shù)和有理數(shù)的概念.
2.通過怎樣用數(shù)簡明地表示一條東西走向的馬路旁的樹、?電線桿與汽車站的相對位置關(guān)系引入數(shù)軸.數(shù)軸是非常重要的數(shù)學(xué)工具,它可以把所有的有理數(shù)用數(shù)軸上的點形象地表示出來,使數(shù)與形結(jié)合為一體,揭示了數(shù)形之間的內(nèi)在聯(lián)系,從而體現(xiàn)出以下4個方面的作用:
。1)數(shù)軸能反映出數(shù)形之間的對應(yīng)關(guān)系.
(2)數(shù)軸能反映數(shù)的性質(zhì).
。3)數(shù)軸能解釋數(shù)的某些概念,如相反數(shù)、絕對值、近似數(shù).
(4)數(shù)軸可使有理數(shù)大小的比較形象化.
3.對于相反數(shù)的概念,?從“數(shù)軸上表示互為相反數(shù)的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數(shù)的幾何意義,同時補充“零的相反數(shù)是零”作為相反數(shù)意義的一部分.
4.正確理解絕對值的概念是難點.
根據(jù)有理數(shù)的絕對值的兩種意義,可以歸納出有理數(shù)的絕對值有如下性質(zhì):
。1)任何有理數(shù)都有唯一的`絕對值.
。2)有理數(shù)的絕對值是一個非負數(shù),即最小的絕對值是零.
。3)兩個互為相反數(shù)的絕對值相等,即│a│=│-a│.
(4)任何有理數(shù)都不大于它的絕對值,即│a│≥a,│a│≥-a.
。5)若│a│=│b│,則a=b,或a=-b或a=b=0.
三維目標
1.知識與技能
(1)了解正數(shù)、負數(shù)的實際意義,會判斷一個數(shù)是正數(shù)還是負數(shù).
(2)掌握數(shù)軸的畫法,能將已知數(shù)在數(shù)軸上表示出來,?能說出數(shù)軸上已知點所表示的解.
。3)理解相反數(shù)、絕對值的幾何意義和代數(shù)意義,?會求一個數(shù)的相反數(shù)和絕對值.
。4)會利用數(shù)軸和絕對值比較有理數(shù)的大。
2.過程與方法
經(jīng)過探索有理數(shù)運算法則和運算律的過程,體會“類比”、“轉(zhuǎn)化”、“數(shù)形結(jié)合”等數(shù)學(xué)方法.
3.情感態(tài)度與價值觀
使學(xué)生感受數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,鼓勵學(xué)生探索規(guī)律,并在合作交流中完善規(guī)范語言.
重、難點與關(guān)鍵
1.重點:正確理解有理數(shù)、相反數(shù)、絕對值等概念;會用正、?負數(shù)表示具有相反意義的量,會求一個數(shù)的相反數(shù)和絕對值.
2.難點:準確理解負數(shù)、絕對值等概念.
3.關(guān)鍵:正確理解負數(shù)的意義和絕對值的意義.
課時劃分
1.1 正數(shù)和負數(shù) 2課時
1.2 有理數(shù) 5課時
1.3 有理數(shù)的加減法4課時
1.4 有理數(shù)的乘除法5課時
1.5 有理數(shù)的乘方 4課時
第一章有理數(shù)(復(fù)習(xí)) 2課時
1.1正數(shù)和負數(shù)
第一課時
三維目標
一.知識與技能
能判斷一個數(shù)是正數(shù)還是負數(shù),能用正數(shù)或負數(shù)表示生活中具有相反意義的量.
二.過程與方法
借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性.
三.情感態(tài)度與價值觀
培養(yǎng)學(xué)生積極思考,合作交流的意識和能力.
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解負數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負數(shù)的方法.
2.難點:正確理解負數(shù)的概念.
3.關(guān)鍵:創(chuàng)設(shè)情境,充分利用學(xué)生身邊熟悉的事物,?加深對負數(shù)意義的理解. 教具準備
投影儀.
教學(xué)過程
四、課堂引入
我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴充的.人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,?;為了表示“沒有物體”、“空位”引進了數(shù)“0”,?測量和分配有時不能得到整數(shù)的結(jié)果,為此產(chǎn)生了分數(shù)和小數(shù).
在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運算的問題,例如課本第2?頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.
五、講授新課
。1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0?以外的數(shù))叫做正數(shù),有時在正數(shù)前
11面也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數(shù)前面33
的“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
(2)、中國古代用算籌(表示數(shù)的工具)進行計算,紅色算籌表示正數(shù),黑色算籌表示負數(shù).
(3)、數(shù)0既不是正數(shù),也不是負數(shù),但0是正數(shù)與負數(shù)的分界數(shù).
(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度.
用正負數(shù)表示具有相反意義的量
。5)、 把0以外的數(shù)分為正數(shù)和負數(shù),起源于表示兩種相反意義的量.?正數(shù)和負數(shù)在許多方面被廣泛地應(yīng)用.在地形圖上表示某地高度時,需要以海平面為基準,通常用正數(shù)表示高于海平面的某地的海拔高度,負數(shù)表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時,通常用正數(shù)表示收入款額,負數(shù)表示支出款額.
。6)、 請學(xué)生解釋課本中圖1.1-2,圖1.1-3中的正數(shù)和負數(shù)的含義.
。7)、 你能再舉一些用正負數(shù)表示數(shù)量的實際例子嗎?
。8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負數(shù)表示水位下降的高度;用正數(shù)表示買進東西的數(shù)量,用負數(shù)表示賣出東西的數(shù)量.
六、鞏固練習(xí)
課本第3頁,練習(xí)1、2、3、4題.
七、課堂小結(jié)
為了表示現(xiàn)實生活中的具有相反意義的量,我們引進了負數(shù).正數(shù)就是我們過去學(xué)過的數(shù)(除0外),在正數(shù)前放上“-”號,就是負數(shù),?但不能說:“帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù)”,在一個數(shù)前面添上負號,它表示的是原數(shù)意義相反的數(shù).如果原數(shù)是一個負數(shù),那么前面放上“-”號后所表示的數(shù)反而是正數(shù)了,另外應(yīng)注意“0”既不是正數(shù),也不是負數(shù).
八、作業(yè)布置
1.課本第5頁習(xí)題1.1復(fù)習(xí)鞏固第1、2、3題.
九、板書設(shè)計
1.1正數(shù)和負數(shù)
第一課時
1、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0?以外的數(shù))叫做正數(shù),有時在正數(shù)前面
11也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數(shù)前面的33
“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
2、隨堂練習(xí)。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思
1.1正數(shù)和負數(shù)
第二課時
三維目標
一.知識與技能
進一步鞏固正數(shù)、負數(shù)的概念;理解在同一個問題中,用正數(shù)與負數(shù)表示的量具有相同的意義.
二.過程與方法
經(jīng)歷舉一反三用正、負數(shù)表示身邊具有相反意義的量,進而發(fā)現(xiàn)它們的共同特征.
三.情感態(tài)度與價值觀
鼓勵學(xué)生積極思考,激發(fā)學(xué)生學(xué)習(xí)的興趣.
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解正、負數(shù)的概念,能應(yīng)用正數(shù)、?負數(shù)表示生活中具有相反意義的量.
2.難點:正數(shù)、負數(shù)概念的綜合運用.
3.關(guān)鍵:通過對實例的進一步分析,?使學(xué)生認識到正負數(shù)可以用來表示現(xiàn)實生活中具有相反意義的量.
教具準備
投影儀.
教學(xué)過程
四、復(fù)習(xí)提問課堂引入
1.什么叫正數(shù)?什么叫負數(shù)?舉例說明,?有沒有既不是正數(shù)也不是負數(shù)的數(shù)?
2.如果用正數(shù)表示盈利5萬元,那么-8千元表示什么?
五、新授
例1.一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值.
2.20xx年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,?中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
分析:在一個數(shù)前面添上負號,它表示的是與原數(shù)具有意義相反的數(shù).?“負”與“正”是相對的,增長-1,就是減少1;增長-6.4%就是減少6.4%,那么什么情況下增長率是0?當與上年持平,既不增又不減時增長率是0.
七年級數(shù)學(xué)教案13
一、教學(xué)目標
1.了解推理、證明的格式,理解判定定理的證法.
2.掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證.
3.通過第二個判定定理的推導(dǎo),培養(yǎng)學(xué)生分析問題、進行推理的能力.
4.使學(xué)生了解知識來源于實踐,又服務(wù)于實踐,只有學(xué)好文化知識,才有解決實際問題的本領(lǐng),從而對學(xué)生進行學(xué)習(xí)目的的教育.
二、學(xué)法引導(dǎo)
1.教師教法:啟發(fā)式引導(dǎo)發(fā)現(xiàn)法.
2.學(xué)生學(xué)法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維.
三、重點·難點及解決辦法
(一)重點
判定定理的推導(dǎo)和例題的解答.
(二)難點
使用符號語言進行推理.
(三)解決辦法
1.通過教師正確引導(dǎo),學(xué)生積極思維,發(fā)現(xiàn)定理,解決重點.
2.通過教師指導(dǎo),學(xué)生自行完成推理過程,解決難點及疑點.
四、課時安排
1課時
五、教具學(xué)具準備
三角板、投影儀、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計練習(xí),復(fù)習(xí)基礎(chǔ),創(chuàng)造情境,引入新課.
2.通過教師指導(dǎo),學(xué)生探索新知,練習(xí)鞏固,完成新授.
3.通過學(xué)生自己總結(jié)完成小結(jié).
七、教學(xué)步驟
(一)明確目標
掌握平行線的第二個定理的.推理,并能運用其進行簡單的證明,培養(yǎng)學(xué)生的邏輯思維能力.
(二)整體感知
以情境創(chuàng)設(shè),設(shè)計懸念,引出課題,以引導(dǎo)學(xué)生的思維,發(fā)現(xiàn)新知,以變式訓(xùn)練鞏固新知.
(三)教學(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:上節(jié)課我們學(xué)習(xí)了平行線的判定公理和一種判定方法,根據(jù)所學(xué)看下面的問題(出示投影).
學(xué)生活動:學(xué)生口答第1、2題.
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學(xué)生活動:由第l、2題,學(xué)生思考分析,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行.
教師將第3題圖形畫在黑板上.
學(xué)生活動:學(xué)生口答理由,同角的補角相等.
師:要求學(xué)生寫出符號推理過程,并板書.
【教法說明】
本節(jié)課是前一節(jié)課的繼續(xù),是在前一節(jié)課的基礎(chǔ)上進行學(xué)習(xí)的,所以通過第1、2兩題復(fù)習(xí)上節(jié)課所學(xué)平行線判定的兩個方法,使學(xué)生明確,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行.第3題是為推導(dǎo)本節(jié)到定定理做鋪墊,即如果同旁內(nèi)角互補,則可以推出同位角相等,也可以推出內(nèi)錯角相等,為定理的推理論證,分散了難點.
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關(guān)系角?
學(xué)生活動:同分內(nèi)角.
師:它們有什么關(guān)系.
學(xué)生活動:互補.
師:這個問題就是知道同分內(nèi)角互補了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題.
七年級數(shù)學(xué)教案14
第一章 一元一次不等式組
1.1 一元一次不等式組
第1教案
教學(xué)目標
1. 能結(jié)合實例,了解一元一次不等式組的相關(guān)概念。
2. 讓學(xué)生在探索活動中體會化陌生為熟悉,化復(fù)雜為簡單的`“轉(zhuǎn)化”思想方法。
3. 提高分析問題的能力,增強數(shù)學(xué)應(yīng)用意識,體會數(shù)學(xué)應(yīng)用價值。
教學(xué)重、難點
1..不等式組的解集的概念。
2.根據(jù)實際問題列不等式組。
教學(xué)方法
探索方法,合作交流。
教學(xué)過程
一、 引入課題:
1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。
2. 由許多問題受到多種條件的限制引入本章。
二、 探索新知:
自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。
分別解出兩個不等式。
把兩個不等式解集在同一數(shù)軸上表示出來。
找出本題的答案。
三、 抽象:
教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)
七年級數(shù)學(xué)教案15
一、素質(zhì)教育目標
。ㄒ唬┲R教學(xué)點
1.使學(xué)生理解近似數(shù)和有效數(shù)字的意義
2.給一個近似數(shù),能說出它精確到哪一痊,它有幾個有效數(shù)字
3.使學(xué)生了解近似數(shù)和有效數(shù)字是在實踐中產(chǎn)生的.
(二)能力訓(xùn)練點
通過說出一個近似數(shù)的精確度和有效數(shù)字,培養(yǎng)學(xué)生把握關(guān)鍵字詞,準確理解概念的能力.
(三)德育滲透點
通過近似數(shù)的學(xué)習(xí),向?qū)W生滲透具體問題具體分析的辯證唯物主義思想
。ㄋ模┟烙凉B透點
由于實際生活中有時要把結(jié)果搞得準確是辦不到的或沒有必要,所以近似數(shù)應(yīng)運而生,近似數(shù)和準確數(shù)給人以美的享受.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:從實際問題出發(fā),啟發(fā)引導(dǎo),充分體現(xiàn)學(xué)生為主全,注重學(xué)生參與意識
2.學(xué)生學(xué)法,從身邊找出應(yīng)用近似數(shù),準確數(shù)的例子→近似數(shù)概念→鞏固練習(xí)
三、重點、難點、疑點及解決辦法
1.重點:理解近似數(shù)的精確度和有效數(shù)字.
2.難點:正確把握一個近似數(shù)的精確度及它的有效數(shù)字的個數(shù).
3.疑點:用科學(xué)記數(shù)法表示的近似數(shù)的精確度和有效數(shù)字的個數(shù).
四、課時安排
1課時
五、教具學(xué)具準備
投影儀,自制膠片
六、師生互動活動設(shè)計
教者提出生活中應(yīng)用準確數(shù)和近似數(shù)的例子,學(xué)生討論回答,學(xué)生自己找出類似的例子,教者提出精確度和有效數(shù)字的概念,教者提出近似數(shù)的有關(guān)問題,學(xué)生討論解決.
七、教學(xué)步驟
。ㄒ唬┨岢鰡栴},創(chuàng)設(shè)情境
師:有10千克蘋果,平均分給3個人,應(yīng)該怎樣分?
生:平均每人千克
師:給你一架天平,你能準確地稱出每人所得蘋果的千克數(shù)嗎?
生:不能
師:哪怎么分
生:取近似值
師:板書課題
【教法說明】通過提出實際問題,使學(xué)生認識到研究近似數(shù)是必須的,是自然的,從而提高學(xué)生近似數(shù)的積極性
。ǘ┨剿餍轮v授新課
師出示投影1
下列實際問題中出現(xiàn)的數(shù),哪些是精確數(shù),哪些是近似數(shù).
。1)初一(1)有55名同學(xué)
(2)地球的`半徑約為6370千米
。3)中華人民共和國現(xiàn)在有31個省級行政單位
(4)小明的身高接近1.6米
學(xué)生活動:回答上述問題后,自己找出生活中應(yīng)用準確數(shù)和近似數(shù)的例子.
師:我們在解決實際問題時,有許多時候只能用近似數(shù)你知道為什么嗎?
啟發(fā)學(xué)生得出兩方面原因:1.搞得完全準確有時是辦不到的,2.往往也沒有必要搞得完全準確.
以開始提出的問題為例,揭示近似數(shù)的有關(guān)概念
板書:
1.精確度
2.有效數(shù)字:一般地,一個近似數(shù),四舍五入到哪一位,就說這個數(shù)精確到哪一位,這時,從左邊第一個不是0的數(shù)字起,到精確的數(shù)位止,所有的數(shù)字,都叫做這個數(shù)的有效數(shù)字.
例如:3.3有二個有效數(shù)字
3.33有三個有效數(shù)字
討論:近似數(shù)0.038有幾個有效數(shù)字,0.03080呢?
【教法說明】通過討論學(xué)生明確近似數(shù)的有效數(shù)字需注意的兩點:一是從左邊第一個不是零的數(shù)起;二是從左邊第一個不是零的數(shù)起,到精確的位數(shù)止,所有的數(shù)字,教者在有效數(shù)字概念對應(yīng)的文字底下畫上波浪線,標上①、②
例1.(出示投影2)
下列由四舍五入吸到近似數(shù),各精確到哪一位,各有哪幾個有效數(shù)字?
。1)43.8(2).03086(3)2.4萬
學(xué)生口述解題過程,教者板書.
對于近似數(shù)2.4萬學(xué)生又能認為是精確到十分位,這時可組織學(xué)生討論近似數(shù)與5.4和近似數(shù)5.4萬中的兩個4的數(shù)位有什么不同,從而得出正確的答案.
【教法說明】對于疑點問題,通過啟發(fā)討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.
鞏固練習(xí)見課本122頁練習(xí)2、3頁
例2(出示投影3)
下列由四舍五入得來的近似數(shù),各精確到哪一位,各有幾個有效數(shù)字?
【七年級數(shù)學(xué)教案】相關(guān)文章:
七年級數(shù)學(xué)教案10-11
初中七年級的數(shù)學(xué)教案02-02
七年級上數(shù)學(xué)教案02-07
七年級數(shù)學(xué)教案12-17
七年級初中數(shù)學(xué)教案12-02
《數(shù)軸》七年級數(shù)學(xué)教案03-16
人教版七年級數(shù)學(xué)教案09-02
初中七年級數(shù)學(xué)教案12-30
七年級上冊數(shù)學(xué)教案01-16