亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數(shù)學(xué)優(yōu)秀教案

時間:2023-02-24 17:21:31 數(shù)學(xué)教案 我要投稿

【精】初中數(shù)學(xué)優(yōu)秀教案

  作為一名默默奉獻的教育工作者,時常需要用到教案,借助教案可以有效提升自己的教學(xué)能力。來參考自己需要的教案吧!下面是小編幫大家整理的初中數(shù)學(xué)優(yōu)秀教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

【精】初中數(shù)學(xué)優(yōu)秀教案

初中數(shù)學(xué)優(yōu)秀教案1

  教學(xué)目的

  1.通過對多個實際問題的分析,使學(xué)生體會到一元一次方程作為實際問題的數(shù)學(xué)模型的作用。

  2.使學(xué)生會列一元一次方程解決一些簡單的應(yīng)用題。

  3.會判斷一個數(shù)是不是某個方程的解。

  重點、難點

  1.重點:會列一元一次方程解決一些簡單的應(yīng)用題。

  2.難點:弄清題意,找出“相等關(guān)系”。

  教學(xué)過程

  一、復(fù)習(xí)提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得

  1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授:

  問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛? (讓學(xué)生思考后,回答,教師再作講評)

  算術(shù)法:(328-64)÷44=264÷44=6(輛)

  列方程:設(shè)需要租用x輛客車,可得。

  44x+64=328 (1)

  解這個方程,就能得到所求的結(jié)果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的.“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習(xí)

  教科書第3頁練習(xí)1、2。

  四、小結(jié)。

  本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。

  五、作業(yè) 。

  教科書第3頁,習(xí)題6.1第1、3題。

初中數(shù)學(xué)優(yōu)秀教案2

  教學(xué)目的:

  1、在解決實際問題的過程中,進一步鞏固形如ax+b=c、ax-b=c的方程的解法,同時理解并掌握形如ax÷b=c的方程的解法,會列上述方程解決兩步計算的實際問題。

  2、提高分析數(shù)量關(guān)系的能力,培養(yǎng)學(xué)生思維的靈活性。

  3、在積極參與數(shù)學(xué)活動的過程中,樹立學(xué)好數(shù)學(xué)的信心。

  教學(xué)重點、難點:

  引導(dǎo)學(xué)生獨立分析問題,找出題目中的等量關(guān)系。

  教學(xué)對策:

  在積極參與數(shù)學(xué)活動的過程中,樹立學(xué)好數(shù)學(xué)的信心。

  教學(xué)準備:

  教學(xué)光盤

  教學(xué)過程:

  一、復(fù)習(xí)準備

  1、解方程(練習(xí)一第6題的第1、3小題)

  4x+12=50

  2.3x-1.02=0.36

  學(xué)生獨立完成,再指名學(xué)生板演并講評,集體訂正。

  二、嘗試練習(xí)

  師:剛才的兩道題同學(xué)們完成得很好,這道題你們還能自己解決嗎?試試看。

  出示:30x÷2=360

  學(xué)生獨立嘗試完成,全班交流。

  指名學(xué)生說一說,解這個方程是第一步需要做什么?這樣做依據(jù)了等式的什么性質(zhì)?

  三、鞏固練習(xí)

  1、出示練習(xí)一第7題。

  (1)分析數(shù)量關(guān)系

  提問:誰來說說三角形的面積公式是怎樣的.?根據(jù)學(xué)生回答板書:S=ah÷2。聯(lián)系這個公式你能找出數(shù)量之間的相等關(guān)系嗎?(生獨立思考后在小組內(nèi)交流)指名口答。你覺得在這些數(shù)量關(guān)系中,哪一個等量關(guān)系適合列方程?根據(jù)這個數(shù)量關(guān)系我們可以列出怎樣的方程?板書:1.3x÷2=0.39。

  第⑵題生獨立思考并列出方程,在小組內(nèi)說說自己的思考過程后全班交流。板書:3x+18=19.8。

  (2)學(xué)生獨立計算,并檢驗答案是否正確,全班核對。

  小結(jié):在一個實際問題中,可能會有幾個不同的等量關(guān)系,我們應(yīng)該選擇合適的等量關(guān)系來列方程。

  2、練習(xí)一第8題。

  學(xué)生讀題后可用自己喜歡的方法將與楊樹和松樹有關(guān)的信息分別列表整理(如列表,作標(biāo)記等)

  學(xué)生獨立解決后再說說數(shù)量之間有怎樣的數(shù)量關(guān)系,是根據(jù)什么樣的數(shù)量關(guān)系列出的方程,最后核對解方程的過程。(提示學(xué)生可從得數(shù)的合理性來初步檢驗)

  3、練習(xí)一第9題。

  學(xué)生獨立思考,指名分析數(shù)量關(guān)系,教師結(jié)合學(xué)生回答畫出線段圖幫助學(xué)生理解題意。

  學(xué)生獨立解方程再集體訂正。

  4、練習(xí)一第10題。

  教師簡單介紹相關(guān)天文知識后,學(xué)生獨立解答,然后及時交流,教師及時講評。

  5、練習(xí)一第11題。

  學(xué)生讀題后教師提問:在本題中出現(xiàn)了兩個問題,那么我們在寫設(shè)句時要注意什么?(提示學(xué)生用不同的字母分別表示小亮出生時的身高和體重)

  學(xué)生獨立解決,集體核對。結(jié)合學(xué)生板演情況進行講評,進一步規(guī)范學(xué)生的書寫格式。

  6、練習(xí)一第12題。

  提問:你能看懂這張發(fā)票上所提供的信息嗎?數(shù)量間有怎樣的等量關(guān)系呢?

  學(xué)生獨立列方程解答,同桌同學(xué)互相檢查,再集體訂正。

  7、練習(xí)一第13題。

  學(xué)生閱讀第13題,理解后獨立解決問題,再交流。

  教師再補充幾題,如:98.6、212華氏度相當(dāng)于多少攝氏度等。

  四、全課小結(jié)

  說一說你這一節(jié)課的學(xué)習(xí)收獲及還有什么問題。

  五、布置作業(yè)

  完成配套習(xí)題。

初中數(shù)學(xué)優(yōu)秀教案3

  教學(xué)目標(biāo):

  1、知識與技能:使學(xué)生經(jīng)歷相似多邊形概念的形成過程,了解相似多邊形的定義,并能根據(jù)定義判斷兩個多邊形是否相似。

  2、過程與方法:在探索相似多邊形本質(zhì)特征的過程中,進一步發(fā)展學(xué)生歸納、類比、反思、交流等方面的能力,體會反例的作用。

  3、情感態(tài)度與價值觀:通過觀察、推斷得到數(shù)學(xué)猜想、獲得數(shù)學(xué)結(jié)論的過程,體驗數(shù)學(xué)活動充滿了探索性和創(chuàng)造性。

  教學(xué)重點:探索相似多邊形的定義過程,以及用定義去判斷兩個多邊形是否相似。

  教學(xué)難點:探索相似多邊形的定義過程。

  教學(xué)過程:

  (一)創(chuàng)設(shè)情景,導(dǎo)入新課。(3分鐘)

  由于學(xué)生已經(jīng)學(xué)習(xí)了形狀相同的圖形,在這里我向?qū)W生展示一組圖片(課件),引導(dǎo)學(xué)生從中找出形狀相同的圖形。學(xué)生回答后,利用課件演示抽象出多邊形。

  大多數(shù)學(xué)生可能會指出黑板邊框的內(nèi)外邊緣所圍成的矩形的形狀也相同。我緊接著創(chuàng)設(shè)懸念:這兩個矩形的形狀相同嗎?

  利用課件演示,把內(nèi)邊緣的矩形的長和寬按相同比例放大后不能與外邊緣矩形重合。此時的學(xué)生肯定倍感疑惑,急切想探個究竟。教師順勢導(dǎo)入新課:

  那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來探究相似多邊形。

  (二)自主學(xué)習(xí),合作探究。(15分鐘)

  1、動手實驗,初步感知定義。

  課前發(fā)給每個小組一套相似多邊形的圖片(其中包括兩個相似三角形、一個等邊三角形、兩個相似四邊形),組織學(xué)生按形狀相同給多邊形找朋友。然后引導(dǎo)學(xué)生以小組為單位從中選擇一組多邊形探究解決下面問題。

  (1)在這兩個多邊形中,是否有相等的內(nèi)角?設(shè)法驗證你的猜想。

  (2)在這兩個多邊形中,相等的內(nèi)角的兩邊是否成比例?

  (設(shè)計意圖:引導(dǎo)學(xué)生分組討論、探究、驗證、交流,并進行演示,著重引導(dǎo)學(xué)生說明驗證的方法,無論學(xué)生提出什么樣的驗證方式,只要有道理,教師都應(yīng)給予充分肯定和鼓勵。)

  對相等內(nèi)角的兩邊是否對應(yīng)成比例這個問題學(xué)生可能會感到困難,由于學(xué)生已經(jīng)學(xué)習(xí)了成比例線段,我會利用這一點啟發(fā)學(xué)生運用測量、計算的方法解決這一難點。

  利用多媒體演示形狀相同的六邊形的對應(yīng)角相等,然后讓學(xué)生觀察計算得到,相等的內(nèi)角的兩邊成比例。然后給出對應(yīng)角、對應(yīng)邊的概念,引導(dǎo)學(xué)生明確對應(yīng)角、對應(yīng)邊的含義。

  2、特例探究,進一步體驗定義。 (課件出示問題)

  例:下列每組圖形形狀相同,它們的對應(yīng)角有怎樣的關(guān)系?對應(yīng)邊呢?

  (1)三角形ABC與正三角形DEF;

  (2)正方形ABCD與正方形EFGH.

  (設(shè)計意圖:引導(dǎo)學(xué)生通過自主探究解決這個問題后進行適當(dāng)引申,使學(xué)生認識到:邊數(shù)相同的正多邊形都相似。)

  3、歸納總結(jié),形成概念。

  教師設(shè)問:回憶一下我們剛才探究過的每一組多邊形,你能發(fā)現(xiàn)它們的共同特點嗎?(課件出示四組圖形)

  (設(shè)計意圖:引導(dǎo)學(xué)生嘗試用自己的語言敘述定義,教師給予規(guī)范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來引導(dǎo)學(xué)生回憶表示全等三角形時應(yīng)注意的問題,也就是要把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上,然后引導(dǎo)學(xué)生用類比的方法得到:在記兩個多邊形相似時也要把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上,說明相似比與兩個多邊形敘述的順序有關(guān)。)

  4、深化理解。

  (1)滿足什么條件的兩個多邊形相似?

  (2)如果兩個多邊形相似,那么它們的對應(yīng)角和對應(yīng)邊有什么關(guān)系?

  (設(shè)計意圖:使學(xué)生認識到:相似多邊形的定義既是最基本最重要的`判定方法,也是最本質(zhì)最重要的特征。)

  (三)辨析研討,知識深化。(14分鐘)

  1、議一議:

  (1)觀察下面兩組圖形,圖(1)中的兩個圖形相似嗎?為什么?圖(2)中的兩個圖形呢?與同桌交流。 (課件出示圖形)

  (2)如果兩個多邊形不相似,那么它們的各角可能對應(yīng)相等嗎?它們的各邊可能對應(yīng)成比例嗎?

  (3)如果兩個菱形相似,那么他們需要滿足什么條件?

  (設(shè)計意圖:為了培養(yǎng)學(xué)生從多角度理解問題,我運用教材中兩個典型的反例,引導(dǎo)學(xué)生討論探究,使學(xué)生認識到:不相似的兩個多邊形的角也可能對應(yīng)相等,不相似的兩個多邊形的邊也可能對應(yīng)成比例;反過來說:只具備各角分別對應(yīng)相等或各邊分別對應(yīng)成比例的多邊形不一定相似。進而使學(xué)生明確:判斷兩個多邊形形相似,各角分別對應(yīng)相等、各邊分別對應(yīng)成比例這兩個條件缺一不可。通過正反兩方面的對照,能使學(xué)生更深刻地理解相似多邊形的定義。這是個易錯點,教學(xué)時應(yīng)注意給學(xué)生留出充分思考交流的時間。另外在設(shè)計時,我在教材原有內(nèi)容的基礎(chǔ)上添加了菱形的情況(見課件),引導(dǎo)學(xué)生探索兩個菱形相似需要滿足什么樣的條件。)

  2、做一做。

  設(shè)問:學(xué)到這兒,你認為黑板邊框內(nèi)外邊緣所成的這兩個矩形相似嗎?請你計算說明。課件出示問題:

  一塊長3m、寬1.5m的矩形黑板,鑲在其外圍的木質(zhì)邊框?qū)?.5cm.邊框的內(nèi)外邊緣所成的矩形相似嗎?為什么?(學(xué)生自主探索解決)

  (設(shè)計意圖:為了滿足學(xué)生多樣化的學(xué)習(xí)需求,使不同的學(xué)生都能獲得令自己滿意的數(shù)學(xué)知識,我把此題進行了適當(dāng)?shù)耐卣购脱由臁?

  拓展一:如果將黑板的上邊框去掉,其他條件不變。

  那么邊框內(nèi)外邊緣所成的矩形相似嗎?為什么?

  拓展二:在拓展一的基礎(chǔ)上,如果矩形的長為2a,寬為a,

  邊框的寬度為x。那么邊框內(nèi)外邊緣所成的矩形還相似嗎?為什么?

  (設(shè)計意圖:引導(dǎo)學(xué)生討論計算,解決問題。目的是讓學(xué)生明確并不是所有相互套疊的兩個矩形都不相似。使學(xué)生初步認識到直觀有時是不可靠的,研究數(shù)學(xué)問題需要在提出猜想的基礎(chǔ)上進行推理和計算,幫助學(xué)生養(yǎng)成嚴謹?shù)膶W(xué)風(fēng)。)

  (四)學(xué)以致用,鞏固提高。(6分鐘)

  慧眼識金!

  1、判斷下列各題是否正確:

  (1)所有的矩形都相似。

  (2)所有的正方形都相似。

  (3)對應(yīng)邊成比例的兩個多邊形相似 問題解決!

  2、下圖中兩面國旗相似,則它們對應(yīng)邊的比為 。

  3、如圖,兩個正六邊形廣場磚的邊長分別為a和b,它們相似嗎?為什么?

  (課件出示圖形)

  (設(shè)計意圖:為了體現(xiàn)相似圖形在生活中的廣泛應(yīng)用,我以實際問題為背景設(shè)計練習(xí)題。這是一組基礎(chǔ)題,意在鞏固相似多邊形的定義以及相似比的計算。)

  (五)課堂小結(jié),知識升華。(2分鐘)

  師生共同完成。

  (設(shè)計意圖:教師首先肯定學(xué)生在課堂中大膽的猜想和思維的積極性,然后引導(dǎo)學(xué)生從幾方面進行反思:我學(xué)會了什么,我最感興趣的是,我發(fā)現(xiàn)了什么,我能解決,我獲得的數(shù)學(xué)方法是幫助學(xué)生構(gòu)成新的知識網(wǎng)絡(luò),形成技能。)

  (六)布置作業(yè):

  1、 P113 習(xí)題第3題

  2、畫一畫:在方格紙中畫出兩個相似多邊形。

  3、探究題:小林在一塊長為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框?qū)挒?0cm,邊框內(nèi)外邊緣所圍成的兩個矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對課堂上做一做的再次拓展和延伸:當(dāng)矩形的長與寬的比不再是2:1時,邊框內(nèi)外邊緣所圍成的兩個矩形還相似嗎?

  板書設(shè) 4、相似多邊形

  定義: 各角對應(yīng)相等,

  各邊對應(yīng)成比例

  表示方法:∽

  相似比:

初中數(shù)學(xué)優(yōu)秀教案4

  教學(xué)目的 知識技能 使學(xué)生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟方面的問題.

  數(shù)學(xué)思考 提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力以及用數(shù)學(xué)的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.

  解決問題 通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟方面的問題.

  情感態(tài)度 通過探究性學(xué)習(xí),抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學(xué)美.

  教學(xué)難點 審題,從文字語言中挖掘有價值的信息.

  知識重點 會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟方面的問題.

  教學(xué)過程 設(shè)計意圖

  教學(xué)過程

  問題一:列方程解應(yīng)用題的一般步驟?

  師生共同回憶

  列方程解應(yīng)用題的步驟:

 。1)審題;(2)設(shè)未知數(shù);

 。3)列方程;(4)求解;

 。5)檢驗; (6)答.

  問題二:矩形的周長和面積?長方體的體積?

  問題三:如圖,某小區(qū)內(nèi)有一塊長、寬比為1:2的'矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.

  教師活動:引導(dǎo)學(xué)生讀題,找到題目中的關(guān)鍵語句.

  學(xué)生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.

  教師活動:用多媒體演示分析,解題方法.

  做一做

  如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.

  課堂練習(xí):將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的 ,求這個正方形的邊長.

  問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,平均每天能多售出2件.在國慶節(jié)期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應(yīng)降價多少元?

  學(xué)生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.

  教師活動:用多媒體幫助學(xué)生分析試題.提示學(xué)生檢驗解的合理性.

  課堂練習(xí):1.經(jīng)銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應(yīng)定為多少元?需要賣出多少雙鞋?

  2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據(jù)市場調(diào)查,該商品的售價與銷售量的關(guān)系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25 %的.如果商店計劃要獲利400元,則每件商品的售價應(yīng)定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)

  復(fù)習(xí)列方程解應(yīng)用題的一般步驟.

  本題為后面解決有關(guān)面積、體積方面問題做鋪墊.

  提高學(xué)生的審題能力.使學(xué)生會解決有關(guān)面積的問題.

  解決體積問題的問題

  培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.

  強調(diào)對方程的解進行雙重檢驗.

  小結(jié)與作業(yè)

  課堂

  小結(jié) 利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).

  本課

  作業(yè) 課本第43頁 習(xí)題2

  課后隨筆(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

初中數(shù)學(xué)優(yōu)秀教案5

  學(xué)習(xí)目標(biāo):

  1、進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義。

  2、會計算加權(quán)平均數(shù),理解“權(quán)”的意義,能選擇適當(dāng)?shù)慕y(tǒng)計量表示數(shù)據(jù)的集中趨勢。

  3、會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。

  4、會用樣本平均數(shù)、方差估計總體的平均數(shù)、方差,進一步感受抽樣的必要性,體會用樣本估計總體的思想。

  一、知識點回顧

  1、數(shù)學(xué)期末總評成績由作業(yè)分數(shù),課堂參與分數(shù),期考分數(shù)三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評成績?yōu)開_______。

  2、樣本1、2、3、0、1的平均數(shù)與中位數(shù)之和等于___.

  3、一組數(shù)據(jù)5,-2,3,x,3,-2,若每個數(shù)據(jù)都是這組數(shù)據(jù)的`眾數(shù),則這組數(shù)據(jù)的平均數(shù)是.

  4、數(shù)據(jù)1,6,3,9,8的極差是

  5、已知一個樣本:1,3,5,x,2,它的平均數(shù)為3,則這個樣本的方差是。

  二、專題練習(xí)

  1、方程思想:

  例:某次考試A、B、C、D、E這5名學(xué)生的平均分為62分,若學(xué)生A除外,其余學(xué)生的平均得分為60分,那么學(xué)生A的得分是_____________.

  點撥:本題可以用統(tǒng)計學(xué)知識和方程組相結(jié)合來解決。

  同類題連接:一班級組織一批學(xué)生去春游,預(yù)計共需費用120元,后來又有2人參加進來,總費用不變,于是每人可以少分攤3元,設(shè)原來參加春游的學(xué)生x人?闪蟹匠蹋

  2、分類討論法:

  例:汶川大地震牽動每個人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻愛心。已知5人平均捐款560元(每人捐款數(shù)額均為百元的整數(shù)倍),捐款數(shù)額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數(shù)額的中位數(shù),那么其余兩人的捐款數(shù)額分別是___________;

  點撥:做題過程中要注意滿足的條件。

  同類題連接:數(shù)據(jù)-1 , 3 , 0 , x的極差是5 ,則x =_____.

  3、平均數(shù)、中位數(shù)、眾數(shù)在實際問題中的應(yīng)用

  例:某班50人右眼視力檢查結(jié)果如下表所示:

  視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

  人數(shù)2 2 2 3 3 4 5 6 7 11 5

  求該班學(xué)生右眼視力的平均數(shù)、眾數(shù)與中位數(shù).發(fā)表一下自己的看法。

  4、方差在實際問題中的應(yīng)用

  例:甲、乙兩名射擊運動員在相同條件下各射靶5次,各次命中的環(huán)數(shù)如下:

  甲:5 8 8 9 10

  乙:9 6 10 5 10

  (1)分別計算每人的平均成績;

  (2)求出每組數(shù)據(jù)的方差;

  (3)誰的射擊成績比較穩(wěn)定?

  三、知識點回顧

  1、平均數(shù):

  練習(xí):在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績?yōu)?0分,問該班有多少人?

  2、中位數(shù)和眾數(shù)

  練習(xí):1.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

  2.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  3.在一次環(huán)保知識競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>

  得分50 60 70 80 90 100 110 120

  人數(shù)2 3 6 14 15 5 4 1

  分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).

  3.極差和方差

  練習(xí):1.一組數(shù)據(jù)X 、X …X的極差是8,則另一組數(shù)據(jù)2X +1、2X +1…,2X +1的極差是( )

  A. 8 B.16 C.9 D.17

  2.如果樣本方差,

  那么這個樣本的平均數(shù)為.樣本容量為.

  四、自主探究

  1、已知:1、2、3、4、5、這五個數(shù)的平均數(shù)是3,方差是2.

  則:101、102、103、104、105、的平均數(shù)是,方差是。

  2、4、6、8、10、的平均數(shù)是,方差是。

  你會發(fā)現(xiàn)什么規(guī)律?

  2、應(yīng)用上面的規(guī)律填空:

  若n個數(shù)據(jù)x1x2……xn的平均數(shù)為m,方差為w。

  (1)n個新數(shù)據(jù)x1+100,x2+100, …… xn+100的平均數(shù)是,方差為。

  (2)n個新數(shù)據(jù)5x1,5x2, ……5xn的平均數(shù),方差為。

  五、學(xué)后反思:

  xxx

初中數(shù)學(xué)優(yōu)秀教案6

  【教學(xué)目標(biāo)】:

  通過實例,使學(xué)生體會用樣本估計總體的思想,能夠根據(jù)統(tǒng)計結(jié)果作出合理的判斷 和推測,能與 同學(xué)進行交流,用清晰的語言表達自己的觀點。

  【重點難點】:

  重點、難點:根據(jù)有關(guān)問題查找資料或調(diào)查,用隨機抽樣的方法選取樣本,能用樣本的平均數(shù)和方差,從而對總體有個體有個合理的估計和推測。

  【教學(xué)過程】:

  一、課前準備

  問題:20xx年北京的空氣質(zhì)量情況如何?請用簡單隨機抽樣方法選取該年的30天,記錄并統(tǒng)計這30天北京的空氣污染指數(shù),求出這30天的平均空氣污染指數(shù),據(jù)此估計北京20xx年全年的平均空氣 污染指數(shù)和空氣質(zhì)量狀況。請同學(xué)們查詢中國環(huán)境保護網(wǎng)。

  二、新課

  師生用隨機抽樣的方法選定如下表中的30天,通過上網(wǎng)得知北京在這30天的空氣污染指數(shù)及質(zhì)量級別,如下表所示:

  這30個空氣污染指數(shù)的平均數(shù)為107,據(jù)此估計該城市20xx年的平均空氣污染指數(shù)為107, 空氣質(zhì)量狀況屬于輕微污染。

  討論:同學(xué)們之 間互相交流,算一算自己選取的樣本的污染指數(shù)為多少?根據(jù)樣本的空氣污染指數(shù)的平均數(shù),估計這個城市的空氣質(zhì)量 。

  2、體會用樣本估計總體的合理性

  下面是老師抽取的樣本的空氣 質(zhì)量級別、所占天數(shù)及比例的統(tǒng)計圖和該城市20xx年全年的相應(yīng)數(shù)據(jù)的統(tǒng)計圖,同學(xué)們可以通過比較兩張統(tǒng)計圖,體會用樣本估計總體的合理性。

  經(jīng)比較可以發(fā)現(xiàn),雖然從樣本獲得的數(shù)據(jù)與總體的不完全一致,但這樣的誤差 還是可以接受的,是一個較好的估計。

  練習(xí):同學(xué)們根據(jù)自己所抽取的樣本繪制統(tǒng)計圖,并 和20xx年全年的相應(yīng)數(shù)據(jù)的統(tǒng)計圖進行比較,想一想用你所抽取的樣本估計總體是否合理?

  顯然,由于各位同學(xué)所抽取的樣本的不同,樣本的污染指數(shù)不同。但是,正如我們前面已經(jīng)看到的,隨著樣本容量(樣本中包含的個體的個數(shù))的增加,由樣本得出的平均數(shù)往往會更接近總體的平均數(shù),數(shù)學(xué)家已經(jīng)證明隨機抽樣方法是科學(xué)而可靠的 . 對于估計總體特性這類問 題,數(shù)學(xué)上的一般做法是給出具有一定可靠程度的一個估計值的范圍,將來同學(xué)們會學(xué)習(xí)到有關(guān)的數(shù)學(xué)知識。

  3、加權(quán)平均數(shù)的求法

  問題1:在計算20個男同學(xué)平均身高時,小華先將所有數(shù)據(jù)按由小到大的'順序排列,如下表所示:

  然后,他這樣計算這20個學(xué)生的平均身高:

  小華這樣計算平均數(shù)可以嗎?為什么?

  問題2:假設(shè)你們年級共有四個班級,各班的男同學(xué)人數(shù)和平均身高如下表所示.

  小強這樣計算全年級男同學(xué)的平均身高:

  小強這樣計算平均數(shù)可以嗎?為什么?

  練習(xí):在一個班的40學(xué)生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,求這個班級學(xué)生的平均年 齡。

  三、小結(jié)

  用樣本估計總體 時,樣本容量越大,樣本對總體的估計也就越精確。相應(yīng)地,搜集、整理、計算數(shù)據(jù)的工作量也就越大,隨機抽樣是經(jīng)過數(shù)學(xué)證明了的可靠的方法,它對于 估計總體特征是很有幫助的。

  四、作業(yè)

  習(xí)題4.2 1

初中數(shù)學(xué)優(yōu)秀教案7

  教學(xué)目標(biāo)

  1. 使學(xué)生掌握不等式的三條基本性質(zhì);

  2. 培養(yǎng)學(xué)生觀察、分析、比較的能力,提高他們靈活地運用所學(xué)知識解題的能力.

  教學(xué)重點和難點

  重點:不等式的三條基本性質(zhì)的運用.

  難點:不等式的基本性質(zhì)3的運用.

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認知結(jié)構(gòu)提出問題

  1. 什么叫不等式?說出不等式的三條基本性質(zhì).

  2. 當(dāng)x取下列數(shù)值時,不等式1-5x<16是否成立?

  3,-4,-3,4,2.5,0,-1.

  3. 用不等式表示下列數(shù)量關(guān)系:

 。1) x的3倍大于x的2倍與5的差; (3)y的與x的的差小于2;

 。2) y的一半與4的.和是負數(shù); (4)5與a的4倍的差不是正數(shù).

  4. 按照下列條件寫出仍然成立的不等式,并說明根據(jù)不等式的哪一條基本性質(zhì):

  (1)m>n,兩邊都減去3; (2)m>n,兩邊同乘以3;

 。3)m>n,兩邊同乘以-3; (4)m>n,兩邊同乘以-3;

 。5)m>n,兩邊同乘以 .

 。ㄒ陨细黝}中,從第2題開始,用投影儀打在屏幕上.學(xué)生在回答上述問題時,如遇到困難,教師應(yīng)做適當(dāng)點撥)在學(xué)生回答完上述問題的基礎(chǔ)上,教師指出:本節(jié)課我們將通過學(xué)習(xí)例題和練習(xí),進一步鞏固并熟練掌握不等式的基本性質(zhì),尤其是不等式基本性質(zhì)。

  二、講授新課

  例1 在下列各題橫線上填入不等號,使不等式成立.并說明是根據(jù)哪一條不等式基本性質(zhì).

 。1)若a–3<9,則a_____12; (2)若-a<10,則a_____–10;

 。3)若a>–1,則a_____–4; (4)若-a>,則a_____0.

  答:(1)a<12,根據(jù)不等式基本性質(zhì)1. (2)a>-10,根據(jù)不等式基本性質(zhì)3.

  (3)a>-4,根據(jù)不等式基本性質(zhì)2. (4)a<0,根據(jù)不等式基本性質(zhì)3.

 。ㄔ谥v授本課時,應(yīng)啟發(fā)學(xué)和在添加不等號“>”或“<”時,要和題目中的已知條件進行對比,觀察它是根據(jù)不等式的哪條基本性質(zhì),是怎樣由已知條件變形得到的.同時還應(yīng)強調(diào)在運用不等式基本性質(zhì)3時,不等號要改變方向=

  例2 已知,用a<0,“<”或“>”號填空:

 。1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

  答:(1)a+2<2,根據(jù)不等式基本性質(zhì)1. (2)a-1<-1,根據(jù)不等式基本性質(zhì)1.

 。ǎ常┮驗椋砤,根據(jù)不等式基本性質(zhì)2. (4)->0,根據(jù)不等式基本性質(zhì)3.

  (5)因為a<0,兩邊同乘以a<0,由不等式基本性質(zhì)3,得a2>0.

 。ǎ叮┮驗閍<0,兩邊同乘以a2>0,由不等式基本性質(zhì)2,得a3<0。

  (7)因為a<0,兩邊同加上-1,由不等式基本性質(zhì)1,得a-1<-1.

  又已知,-1<0,所以a-1<0.

  (8)因為。a<0,所以a≠0,所以|a|>0.

 。ū纠}除了進一步運用不等式的三條基本性質(zhì)外,還涉及了一些舊的基礎(chǔ)知識,如a<0表示a是負數(shù);a>0表示a是正數(shù);|a|是非負數(shù).后面幾個小題較靈活,條件由具體數(shù)字改為抽象的字母,這里字母代表正數(shù)還是代表負數(shù)是解決問題的關(guān)鍵)

  例外 判斷下列各題的推導(dǎo)是否正確?為什么?(投影)(請學(xué)生回答)

  (1)因為7.5>5.7,所以-7.5<-5.7; (2)因為a+8>4,,所以a>-4; (3)因為4a>4b,所以a>b; (4)因為a<b,所以<>'

 。ǎ担┮驗椋荆,所以a>4; (6)因為-1>-2,所以-a-1>-a-2;

 。ǎ罚┮驗椋常荆,所以3a>2a.

  答:(1)正確,根據(jù)不等式基本性質(zhì)3. (2)正確,根據(jù)不等式基本性質(zhì)1.

  (3)正確,根據(jù)不等式基本性質(zhì)2. (4)不對,根據(jù)不等式基本性質(zhì)3,應(yīng)改為>; (5)因為>-1,所以a>4

  答:(1)正確,根據(jù)不等式基本性質(zhì)3。 (2)正確,根據(jù)不等式基本性質(zhì)1。

  (3)正確,根據(jù)不等式基本性質(zhì)2。 (4)不對,根據(jù)不等式基本性質(zhì)3,應(yīng)改為。

  (5)不對,根據(jù)不等式基本性質(zhì)5,應(yīng)改為a<4。

  (6)正確,根據(jù)不等式基本性質(zhì)1。 (7)不對,應(yīng)分情況逐一討論。

  當(dāng)a>0時,3a>2a。(不等式基本性質(zhì)2)

  當(dāng)a=0時,3a<2a。

  當(dāng)a<0時,3a<2a。(不等式基本性質(zhì)3)

  (當(dāng)學(xué)生在回答本題的過程當(dāng)中,當(dāng)遇到困難或問題時,教師應(yīng)做適當(dāng)引導(dǎo)、啟發(fā)、幫助)

  三、課堂練習(xí)(投影)

  1。按照下列條件,寫出仍能成立的不等式:

  (1)由-2<-1,兩邊都加-a; (2)由-4x<0,兩邊都乘以-;

  (3)由7>5,兩邊都乘以不為零的-a。

  2?用“>”或“<”號填空:

  (1)當(dāng)a-b<0時,a______b: (2)當(dāng)a<0,b<0時,ab_____0;

  (3)當(dāng)a<0,b<0時,ab____0; (4)當(dāng)a>0,b<0時,ab____0;

  (5)若a____0,b<0,則ab>0; (6)若<0,且b<0,則a_____0。

  四、師生共同小結(jié)

  在師生共同回顧本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師指出:①在利用不等式的基本性質(zhì)進行變形時,當(dāng)不等式的兩邊都乘以(或除以)同一個字母,字母代表什么數(shù)是問題的關(guān)鍵,這決定了是用不等式基本性質(zhì)2還是基本性質(zhì)3,也就是不等號是否要改變方向的問題;②運用不等式基本性質(zhì)3時,要變兩個號,一個性質(zhì)符號,另一個是不等號。

  五、作業(yè)

  1。根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:

  (1)x-1<0; (2)x>-x+6;

  (3)3x>7; (4)-x<-3。

  2。設(shè)a<b,用“>”或“>”號連接下列各題中的兩個代數(shù)式:

  (1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;

  (4); (5); (6)-b,-a。

  3。用“>”號或“<”號填空:

  (1)若a-b<0,則a_____b; (2)若b<0,則a+b_____a;

  (3)若a=0,則a+b_____b; (4)若<0,則ab_____;

  (5)b<a<2,則(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

  課堂教學(xué)設(shè)計說明

  由于本節(jié)課的教學(xué)目標(biāo)是使學(xué)生進一步掌握不等式基本性質(zhì),尤其是基本性質(zhì)3。故在設(shè)計教學(xué)過程時,注意在教師的主導(dǎo)作用下讓學(xué)生以練為主,從而使學(xué)生在初步掌握不等式的三條基本性質(zhì)的基礎(chǔ)上,通過口答,筆做,討論等不同的方式的練習(xí),提高學(xué)生將不等式正確、靈活進行變形的能力。

初中數(shù)學(xué)優(yōu)秀教案8

  一、教學(xué)目標(biāo)

  知識與技能:使學(xué)生了解正數(shù)與負數(shù)是從實際需要中產(chǎn)生的;

  過程與方法:使學(xué)生理解正數(shù)與負數(shù)的概念,并會判斷一個數(shù)是正數(shù)還是負數(shù),初步會用正負數(shù)表示具有相反意義的量;

  情感與態(tài)度:在負數(shù)概念的形成過程中,培養(yǎng)學(xué)生的觀察、歸納與概括的能力

  二、教學(xué)重點和難點

  負數(shù)的引入和意義

  三、教學(xué)過程

  創(chuàng)設(shè)情景,生活實例引入,觀察猜想,合作探究

 。ㄒ唬、從學(xué)生原有的認知結(jié)構(gòu)提出問題

  大家知道,數(shù)學(xué)與數(shù)是分不開的,它是一門研究數(shù)的學(xué)問現(xiàn)在我們一起來回憶一下,小學(xué)里已經(jīng)學(xué)過哪些類型的數(shù)?

  學(xué)生答后,教師指出:小學(xué)里學(xué)過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分數(shù)和零(小數(shù)包括在分數(shù)之中),它們都是由于實際需要而產(chǎn)生的。

  為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……

  為了表示半小時、四元八角七分、……,我們需用到分數(shù)1/2和小數(shù)4。87、……

  為了表示“沒有人”、“沒有羊”、……我們要用到0。

  但在實際生活中,還有許多量不能用上述所說的自然數(shù),零或分數(shù)、小數(shù)表示。

 。ǘ、師生共同研究形成正負數(shù)概念

  某市某一天的最高溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學(xué)學(xué)過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。

  它們是具有相反意義的兩個量。

  現(xiàn)實生活中,像這樣的相反意義的量還有很多。

  例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155 米,“高于”和“低于”其意義是相反的。

  又如,某倉庫昨天運進貨物 噸,今天運出貨物 噸,“運進”和“運出”,其意義是相反的。

  同學(xué)們能舉例子嗎?

  學(xué)生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?

  現(xiàn)在,數(shù)學(xué)中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學(xué)里學(xué)過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量筒明地表示出來了。

  讓學(xué)生用同樣的方法表示出前面例子中具有相反意義的量:

  高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

  運進綱物 噸,記作+ ;運出貨物 噸,記作— 。

  教師講解:什么叫做正數(shù)?什么叫做負數(shù)。

  強調(diào),數(shù)0既不是正數(shù),也不是負數(shù),它是正、負數(shù)的界限,表示“基準”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號

 。ㄈ⑦\用舉例 變式練習(xí)

  例1 所有的正數(shù)組成正數(shù)集合,所有的負數(shù)組成負數(shù)集合把下列各數(shù)中的正數(shù)和負數(shù)分別填在表示正數(shù)集合和負數(shù)集合的.圈里:

  —11,4,8,+73,—2,7, , ,—8,12, — ;

  正數(shù)集合 負數(shù)集合

  此例由學(xué)生口答,教師板書,注意加上省略號,說明這是因為正(負)數(shù)集合中包含所有正(負)數(shù),而我們這里只填了其中一部分。然后,指出不僅可以用圈表示集合,也可以用大括號表示集合

  課堂練習(xí)

  任意寫出6個正數(shù)與6個負數(shù),并分別把它們填入相應(yīng)的大括號里:

  正數(shù)集合:{ …},

  負數(shù)集合:{ …}

  四、課堂小結(jié)

  由于實際生活中存著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負數(shù)正數(shù)是大于0的數(shù),負數(shù)就是在正數(shù)前面加上“—”號的數(shù)0既不是正數(shù),也不是負數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃

  五、作業(yè)布置

  1。北京一月份的日平均氣溫大約是零下3℃,用負數(shù)表示這個溫度

  2。在小學(xué)地理圖冊的世界地形圖上,可以看到亞洲西部地中海旁有一個死海湖,圖中標(biāo)著—392,這表明死海的湖面與海平面相比的高度是怎樣的?

  3。在下列各數(shù)中,哪些是正數(shù)?哪些是負數(shù)?

  —16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。

  4。如果—50元表示支出50元,那么+200元表示什么?

  5。河道中的水位比正常水位低0。2米記作—0。2米,那么比正常水位溫0。1米記作什?

  6。如果自行車車條的長度比標(biāo)準長度長2毫米記作+2毫米,那么比標(biāo)準長度短3毫米記作么?

  7。一物體可以左右移動,設(shè)向右為正,問:

 。1)向左移動12米應(yīng)記作什么?(2)“記作8米”表明什么?

初中數(shù)學(xué)優(yōu)秀教案9

  ●教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識點

  1.掌握極差、方差、標(biāo)準差的概念.

  2.明白極差、方差、標(biāo)準差是反映一組數(shù)據(jù)穩(wěn)定性大小的.

  3.用計算器(或計算機)計算一 組數(shù)據(jù)的標(biāo)準差與方差.

 。ǘ┠芰τ(xùn)練要求

  1.經(jīng)歷對數(shù)據(jù)處理的過程,發(fā)展學(xué)生初步的統(tǒng)計意識和數(shù)據(jù)處理能力.

  2.根據(jù)極差、方差、標(biāo)準差的大小,解決問題,培養(yǎng)學(xué)生解決問題的能力.

 。ㄈ┣楦信c價值觀要求

  1.通過解決現(xiàn)實情境中問題,增強數(shù)學(xué)素養(yǎng),用數(shù) 學(xué)的眼光看世界.

  2.通過小組活動,培養(yǎng)學(xué)生的合作意識和能力.

  ●教學(xué)重點

  1.掌握極差、方差或標(biāo)準差的概念,明白極差、方差、標(biāo)準差是刻畫數(shù)量離散程度的幾個統(tǒng)計量.

  2.會求一組數(shù)據(jù)的極差、方差、標(biāo)準差,并會判斷這組數(shù)據(jù)的穩(wěn)定性 .

  ●教學(xué)難點

  理解方差、標(biāo)準差的概念,會求一組數(shù)據(jù)的方差、標(biāo)準差.

  ●教學(xué)方法

  啟發(fā)引導(dǎo)法

  ●教學(xué)過程

 、.創(chuàng)設(shè)現(xiàn)實問題情景,引入新課

 。蹘煟菰谛畔⒓夹g(shù)不斷發(fā)展的社會里,人們需要對大量紛繁復(fù)雜的信息作出恰當(dāng)?shù)倪x擇與判斷.

  當(dāng)我們?yōu)榧尤搿癢TO”而欣喜若狂的時刻,為了提高農(nóng)副產(chǎn)品的國際競爭力,一些行業(yè)協(xié)會對農(nóng)副產(chǎn)品的規(guī)格進行了劃分.某外貿(mào)公司要出口 一批規(guī)格為75 g的雞腿.現(xiàn)有2個廠家提供貨源.

  [生](1)根據(jù)20只雞腿在圖中的分布情況,可知甲、乙兩廠被抽取雞腿的平均質(zhì)量分別為75 g.

  (2)設(shè)甲、乙兩廠被抽取的雞腿的平均質(zhì)量 甲, 乙,根據(jù)給出的.數(shù)據(jù),得

  甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

  乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

  (3) 從甲廠抽取的這20只雞腿質(zhì)量的最大值是78 g,最小值是72 g,它們相差78-72=6 g;從乙廠抽取的這20只雞腿質(zhì)量的最大值是80 g,最小值是71 g,它們相差80-71=9(g).

 。4)如果只考慮雞腿的規(guī)格,我認為外貿(mào)公司應(yīng)購買甲廠的雞腿,因為甲廠雞腿規(guī)格比較穩(wěn)定,在75 g左右擺動幅度較小.

  [師]很好.在我們的實際生活中,會出現(xiàn)上面的情況,平均值一樣,這里我們也關(guān)心數(shù)據(jù)與平均值的離散程度 .也就是說,這種情況下,人們除了關(guān)心數(shù)據(jù)的“平均值”即“平均水平”外,人們往往還關(guān)注數(shù)據(jù)的離散程度,即相對于“平均水平”的偏離情況.

  從上圖也能很直觀地觀察出:甲廠相對于“平均水平”的偏離程度比乙廠相對于“平均水平” 的偏離程度小.

  這節(jié)課我們就來學(xué)習(xí)關(guān)于數(shù)據(jù)的離散程度的幾個量.

 、颍v授新課

 。蹘煟菰谏厦鎺讉問題中,你認為哪一個數(shù)值是反映數(shù)據(jù)的離散程度的一個量呢?

 。凵菸艺J為最大值與最小值的差是反映數(shù)據(jù)離 散程度的一個量.

 。蹘煟莺苷_.我們把一組數(shù)據(jù)中最大數(shù)據(jù)與 最小數(shù)據(jù)的差叫極差.而極差是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量.

 。凵荩1)丙廠這20只雞腿質(zhì)量的平均數(shù):

  丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

  極差為:79-72=7(g)

  [生]在第(2)問中,我認為可以用丙廠這20只雞腿的質(zhì)量與其平均數(shù)的差的和來刻畫這20只雞腿的質(zhì)量與其平均數(shù)的差距.

  甲廠20只雞 腿的質(zhì)量與相應(yīng)的平均數(shù)的差距為:

 。75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

  =0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

  丙廠20只雞腿的質(zhì)量與相應(yīng)的平均數(shù)的差距為:

  (75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

  由此可知不能用各數(shù)據(jù)與平均數(shù)的差的和來衡量這組數(shù)據(jù) 的波動大小.

  數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準差來刻畫.

  其中方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即

  s2= [(x1- )2+(x2- )2+…+(xn- )2]

  其中 是x1,x2,…,xn的平均數(shù),s2是 方差,而標(biāo)準差就是方差的算術(shù)平方根.

 。凵轂槭裁捶讲罡拍钪幸詳(shù)據(jù)個數(shù)呢?

 。蹘煟菔菫榱讼龜(shù)據(jù)個數(shù)的印象.

  由此我們知道:一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準差越小,這組數(shù)據(jù)就越穩(wěn)定.

 。凵輼O差還比較容易算出.而方差、標(biāo)準差算起來就麻煩多了.

 。蹘煟菸覀兛梢允褂糜嬎闫,它可以很方便地計算出一組數(shù)據(jù)的標(biāo)準差與方差,其大體步驟是 ;進入統(tǒng)計計算狀態(tài),輸入數(shù)據(jù),按鍵就可得出標(biāo)準差.

  同學(xué)們可在自己的計算器上探 索計算標(biāo)準差的具體操作

  計算器一般不具有求方差的功能,可以先求出標(biāo)準差,再平方即可求出方差.

 。凵輘甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

  s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

  因為s甲2<s丙2.

  所以根據(jù)計算的結(jié)果,我認為甲廠的產(chǎn)品更符合要求.

  Ⅲ.隨堂練習(xí)

 、.課時小結(jié)

  這節(jié)課 ,我們著重學(xué)習(xí):對于一組數(shù)據(jù),有時只知道它的平均數(shù)還不夠,還需要知道它的波動大;描述一組數(shù)據(jù)的波動大小的量不止一種,最常用的極差、方差、標(biāo)準差;方差 和標(biāo)準差既有聯(lián)系 ,也有區(qū)別.

  Ⅴ.課后作業(yè)

 、.活動與探究

  甲、乙兩名學(xué)生進行射擊練習(xí),兩人在相同條件下各射靶10次,將射擊結(jié)果作統(tǒng)計分析如下:

 。1)請你填上表中乙學(xué)生的相關(guān)數(shù)據(jù);

 。2)根據(jù)你所學(xué)的統(tǒng)計數(shù)知識,利用上述某些數(shù)據(jù)評價甲、乙兩人的射擊水平.

初中數(shù)學(xué)優(yōu)秀教案10

  一、教材內(nèi)容

  人民教育出版社《義務(wù)教育課程標(biāo)準實驗教科書數(shù)學(xué)》六年級下冊第2~4頁例1、例2。

  二、教學(xué)目標(biāo)

  1.引導(dǎo)學(xué)生在熟悉的生活情境中初步認識負數(shù),能正確地讀、寫正數(shù)和負數(shù);知道0不是正數(shù)也不是負數(shù)。

  2.使學(xué)生初步學(xué)會用負數(shù)表示一些日常生活中的實際問題,體驗數(shù)學(xué)與生活的聯(lián)系。

  3.結(jié)合負數(shù)的歷史,對學(xué)生進行愛國主義教育;培養(yǎng)學(xué)生良好的數(shù)學(xué)情感和數(shù)學(xué)態(tài)度。

  三、教學(xué)重、難點

  認識負數(shù)的意義。

  四、教學(xué)過程

  (一)談話交流

  談話:同學(xué)們,剛才一上課大家就做了一組相反的動作,是什么?(起立、坐下。)今天的數(shù)學(xué)課我們就從這個話題聊起。(板書:相反。)我們周圍有很多的自然和社會現(xiàn)象中都存在著相反的情況,請看屏幕:(課件播放圖片。)太陽每天從東方升起,西方落下;公交車的站點有人上車和下車;繁華的街市上有買也有賣;激烈的賽場上有輸也有贏……你能舉出一些這樣的現(xiàn)象嗎?

  (二)教學(xué)新知

  1.表示相反意義的量

  (1)引入實例

  談話:如果沿著剛才的話題繼續(xù)“聊”下去的話,就很自然地走進數(shù)學(xué),我們一起來看幾個例子(課件出示)。

 、 六年級上學(xué)期轉(zhuǎn)來6人,本學(xué)期轉(zhuǎn)走6人。

 、 張阿姨做生意,二月份盈利1500元,三月份虧損200元。

  ③ 與標(biāo)準體重比,小明重了2.5千克,小華輕了 1.8千克。

 、 一個蓄水池夏季水位上升米,冬季水位下降米。

  指出:這些相反的詞語和具體的數(shù)量結(jié)合起來,就成了一組組“相反意義的量”。(補充板書:相反意義的量。)

  (2)嘗試

  怎樣用數(shù)學(xué)方式來表示這些相反意義的量呢?

  請同學(xué)們選擇一例,試著寫出表示方法。

  ……

  (3)展示交流

  ……

  2.認識正、負數(shù)

  (1)引入正、負數(shù)

  談話:剛才,有同學(xué)在6的前面寫上“+”表示轉(zhuǎn)來6人,添上“-”表示轉(zhuǎn)走6人(板書:+6 -6),這種表示方法和數(shù)學(xué)上是完全一致的。

  介紹:像“-6”這樣的數(shù)叫負數(shù)(板書:負數(shù));這個數(shù)讀作:負六。

  “-”,在這里有了新的意義和作用,叫“負號”。“+”是正號。

  像“+6”是一個正數(shù),讀作:正六。我們可以在6的前面加上“+”,也可以省略不寫(板書:6)。其實,過去我們認識的很多數(shù)都是正數(shù)。

  (2)試一試

  請你用正、負數(shù)來表示出其它幾組相反意義的量。

  寫完后,交流、檢查。

  3.聯(lián)系實際,加深認識

  (1)說一說存折上的數(shù)各表示什么?(教學(xué)例2。)

  (2)聯(lián)系生活實際舉出一組相反意義的量,并用正、負數(shù)來表示。

  ① 同桌交流。

  ② 全班交流。根據(jù)學(xué)生發(fā)言板書。

  這樣的正、負數(shù)能寫完嗎?(板書:… …)

  強調(diào)指出:像過去我們熟悉的`這些整數(shù)、小數(shù)、分數(shù)等都是正數(shù),也叫正整數(shù)、正小數(shù)、正分數(shù);在它們的前面添上負號,就成了負整數(shù)、負小數(shù)、負分數(shù),統(tǒng)稱負數(shù)。

  4.進一步認識“0”

  (1)看一看、讀一讀

  談話:接下來,我們一起來看屏幕:這是去年12月份某天,部分城市的氣溫情況(課件出示)。

  哈爾濱: -18 ℃~-5 ℃

  北京: -6 ℃~6 ℃

  深圳: 15 ℃~25 ℃

  溫度中有正數(shù)也有負數(shù),請把負數(shù)讀出來。

  (2)找一找、說一說

  我們來看首都北京當(dāng)天的溫度,“-5 ℃”讀作:“負五攝氏度”或“負五度”,表示零下5度;5 ℃又表示什么?

  你能在溫度計上找出這兩個溫度所在的刻度嗎?(課件出示溫度計,沒有刻度數(shù))為什么?

  現(xiàn)在你能很快找出來嗎?(給出溫度計的刻度數(shù),生到前面指。)

  說一說,你怎么這么快就找到了?

  (課件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃嗎?

  (3)提升認識

  請學(xué)生觀察溫度計,說一說有什么發(fā)現(xiàn)?

  在學(xué)生發(fā)言的基礎(chǔ)上,強調(diào):以0℃為分界點,零上溫度都用正數(shù)來表示,零下溫度都用負數(shù)來表示。(或負數(shù)都表示零下溫度,正數(shù)都表示零上溫度。)

  “0”是正數(shù),還是負數(shù)呢?

  在學(xué)生發(fā)言的基礎(chǔ)上,強調(diào):“0”作為正數(shù)和負數(shù)的分界點,它既不是正數(shù)也不是負數(shù)。

  (4)總結(jié)歸納

  如果過去我們所認識的數(shù)只分為正數(shù)和0的話,那么今天我們可以對“數(shù)”進行重新分類:

  5.練一練

  讀一讀,填一填。

  6.出示課題

  同學(xué)們,想一想,今天你學(xué)習(xí)了什么新知識?認識了哪位新朋友?你能為今天的數(shù)學(xué)課定一個課題嗎?

  根據(jù)學(xué)生的回答總結(jié)本節(jié)課所學(xué)內(nèi)容,并選擇板書課題:認識負數(shù)。

初中數(shù)學(xué)優(yōu)秀教案11

  知識點:

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學(xué)目標(biāo):

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

  考查重難點與常見題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。

  教學(xué)過程:

  因式分解知識點

  多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

  (1)提公因式法

  如多項式

  其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

 。2)運用公式法,即用

  寫出結(jié)果。

  (3)十字相乘法

  對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的`a,b,如有,則對于一般的二次三項式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

 。4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

  分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

  (5)求根公式法:如果有兩個根X1,X2,那么

  2、教學(xué)實例:學(xué)案示例

  3、課堂練習(xí):學(xué)案作業(yè)

  4、課堂:

  5、板書:

  6、課堂作業(yè):學(xué)案作業(yè)

  7、教學(xué)反思:

初中數(shù)學(xué)優(yōu)秀教案12

  一、 教材內(nèi)容及設(shè)置依據(jù)

  【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運算的回顧,學(xué)習(xí)包括分數(shù)和小數(shù)的有理數(shù)的加減混合運算,理解其方法;應(yīng)用有理數(shù)的加減混合運算,解決實際問題。

  【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應(yīng)日常生活準備條件)、可接受性原則(即考慮學(xué)生的認識水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。

  二、教材的地位和作用

  本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識的延伸和加強,同時又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運算的基礎(chǔ),

  特別是減法可以轉(zhuǎn)化為加法為后面的`除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了

  類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。

  三、對重點、難點的處理

  【對重點的處理】本節(jié)的重點是有理數(shù)加減混合運算的方法及在實際生活中的應(yīng)用。為了突出重點,教師應(yīng)盡量從實際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會運算的方法。同時我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:1、知識鞏固型 2、實際應(yīng)用型 3、方法多變型 4、知識拓展型等。

  【對難點的處理】對于難點的處理,因為新教材“強調(diào)要給學(xué)生足夠的空間和時間”,因此教學(xué)時我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗和已有的知識經(jīng)驗出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵學(xué)生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運算可以統(tǒng)一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學(xué)生通過具體情境對“代數(shù)和”加以體會)

  四、關(guān)于教學(xué)方法的選用

  根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,本節(jié)課可采用的方法:

  1、情境體驗:通過教師創(chuàng)設(shè)貼近學(xué)生生活實際的教學(xué)情境,讓學(xué)生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學(xué)生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。

  2 、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點,符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的引導(dǎo)啟發(fā),充分調(diào)動學(xué)生學(xué)習(xí)的主動性。

  3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個“學(xué)習(xí)共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補充,分享彼此的思考、經(jīng)驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學(xué)生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。

  五、關(guān)于學(xué)法的指導(dǎo)

  “授人以魚,不如授人以漁”,在教給學(xué)生知識的同時,要教給他們好的學(xué)習(xí)方法,讓他們“會學(xué)習(xí)”在本節(jié)課的教學(xué)中,在提出問題后,要鼓勵學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學(xué)是生活實際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實際問題的意識、愿望。

  六、課時安排:1課時

  教學(xué)程序:

  一、復(fù)習(xí)鋪墊:

  首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進行速算比賽,看誰做的又對又快。

  1、45+(-23) 2、9-(-5)

  3、-28-(-37)4、(-13 )+0

  5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

  從四排學(xué)生中個推選一名學(xué)生代表板演6、7、8、題。

  通過比賽的方式,符合學(xué)生的心理特點,迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動力,激發(fā)了學(xué)習(xí)的興趣。

  然后教師與學(xué)生一起對題目進行評判,對優(yōu)勝的學(xué)生進行表揚,對其他學(xué)生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運算奠定了基礎(chǔ)。

  二、新知探索:

  1、 出示引例1: 一架飛機作特技表演,起飛后的高度變化如下表: 高度變化 記作

  上升4.5千米 +4.5千米

  下降3.2千米 -3.2千米

  上升1.1千米 +1.1千米

  下降1.4千米 -1.4千米

  此時飛機比起飛點高了多少米?

  讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法:

 、 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4) =1.3+1.1-1.4

 。2.4+(-1.4) =2.4-1.4

 。1千米 =1千米

  教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運算可以統(tǒng)一成加法;加法運算可以寫成省略括號及前面加號的形式。使學(xué)生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。通過小組合作,探究討論,讓每一個學(xué)

初中數(shù)學(xué)優(yōu)秀教案13

  教學(xué)設(shè)計思想:本節(jié)安排1課時講授;影子是生活中常見的現(xiàn)象,教學(xué)中引用太陽光照射下的影子種種生活中的實例,目的是讓學(xué)生體會影子在生活中的存在,激發(fā)學(xué)習(xí)的興趣。課前布置作業(yè)讓學(xué)生觀察不同時刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關(guān)概念的理解,并掌握其應(yīng)用。

  教學(xué)目標(biāo):

  1.知識與技能

  經(jīng)歷實踐、探索的過程,知道平行投影、正投影的含義;

  能夠確定物體在太陽光下的影子的特征;

  知道在不同時刻物體在太陽光下形成的影子的大小和方向是不同的。

  2.過程與方法

  通過觀察、想象、實踐形成一定的空間想象能力,發(fā)展空間觀念;

  探索不同時刻不同物體的影子的變化規(guī)律:影子長的比等于物體高度的比。

  3.情感、態(tài)度與價值觀

  通過理論研究自然現(xiàn)象,引發(fā)對大自然和社會生活探索的欲望,提高學(xué)習(xí)興趣,增進數(shù)學(xué)的應(yīng)用意識。

  教學(xué)重點:理解平行投影的含義。

  教學(xué)難點:通過對平行投影的認識進行物體與投影之間的相互轉(zhuǎn)化。

  教學(xué)方法:啟發(fā)式。

  教學(xué)安排:1課時。

  教學(xué)媒體:幻燈片。

  教學(xué)過程:

  課前準備:讓學(xué)生在課前觀察物體在陽光下的影子,自己總結(jié)出一些結(jié)論。

  一、創(chuàng)設(shè)情景

  問題1:

  師:請看這幅圖片,哪位同學(xué)知道這是什么?(提出問題,激發(fā)學(xué)生的興趣)

  教師陳述:日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成。

  當(dāng)太陽光照在日晷上時,晷針的影子就會投向晷面。隨著時間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時刻。(看下圖)

  設(shè)疑激趣:利用古代顯示時刻的物體來引起學(xué)生的興趣。

  二、引出課題

  問題2:

  師:太陽光可看成平行的直線,在陽光下,我們經(jīng)?匆娢矬w的影子,那同學(xué)們你們知道影子的長短和方向在一天中是怎樣變化的嗎?

  下面我們來看幾副圖片:(幻燈顯示)

  (1) (2) (3)

  上面的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的,請根據(jù)樹的影子,判斷拍攝的先后順序,并說明理由。

  生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。

  師:這位同學(xué)回答的很正確;但是哪位同學(xué)能解釋一下呢?

  生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據(jù)以前我們學(xué)過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。

  師:回答的很好;根據(jù)上面的總結(jié),我們觀看下面的圖片,觀察有什么變化?

  在我國北方地區(qū),人們居住的房屋窗戶大多是朝南的,中午某時刻室內(nèi)的窗影在一年四季里會有什么變化呢?

  學(xué)生相互討論,交流。

  生:夏天的時候影子是最短的,冬天是最長的,春秋次之。

  活動:學(xué)生有豐富的關(guān)于影子的生活經(jīng)驗,讓他們結(jié)合經(jīng)驗想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學(xué)生代表太陽、物體、影子,模擬太陽東升西落。得出結(jié)論:大——小——大;西——北偏西——正北——北偏東——東。

  教師總結(jié):物體在光線的照射下,會在地面或墻面上留下它的影子,這種現(xiàn)象就是投影(projection)。

  太陽的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。

  如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。

  現(xiàn)在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[

  如圖,正方體正面(R面)在V面上的正投影 。

  1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?

  2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?

  3.P面及與它相對的`面的正投影分別是什么圖形?

  學(xué)生相應(yīng)回答上面的問題。

  師:我們學(xué)習(xí)了投影的相關(guān)概念,也觀看了許多投影的圖片,那同學(xué)們思考這樣的問題:

  (1)一個物體的正投影是立體圖形還是平面圖形?

 。2)點、線段和多邊形的正投影可能分別是什么圖形?

  第一問顯而易見,教師可以找中下等學(xué)生回答。

  第二問教師可以通過課件演示,學(xué)生觀看,回答問題。(參看課件:點、線、面的投影)

  師生互動:

  例:旗桿直立在A處,它的平行投影如圖所示。

 。1)請畫出小明站在B處時的投影(用線段表示)。并說明你這樣畫的理由。

 。2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。

  (3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關(guān)系?為什么?

  學(xué)生在教師的引導(dǎo)下,自主完成這道例題,教師再進行講解。

  教師總結(jié):一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。

  三、練習(xí)

  1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。

  2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。

  3.結(jié)合地理知識,談?wù)勗谖覈男┑貐^(qū)會有太陽直射現(xiàn)象。這時人的投影是什么樣的?

  四、課堂總結(jié)

  板書設(shè)計:

  平行投影

  一、導(dǎo)入 平行投影

  問題1: 正投影

  二、新授 例:

  問題2:

  三、練習(xí)

  投影:

  四、總結(jié)

初中數(shù)學(xué)優(yōu)秀教案14

  教學(xué)目標(biāo):

  1、初步理解垂直與平行是同一平面內(nèi)兩直線的特殊位置關(guān)系,初步認識垂線和平行線。

  2、在“演示操作驗證解釋應(yīng)用”的過程中,發(fā)展學(xué)生的空間觀念,滲透猜想、與驗證的數(shù)學(xué)思想方法。

  教學(xué)重點、難點

  正確理解“相交”、“互相平行”、“互相垂直”等概念,發(fā)展學(xué)生的空間想象力。

  教學(xué)過程:

  一、平面內(nèi)兩直線位置關(guān)系

  1、操作:

  請每位同學(xué)在一張紙上畫兩條直線,這兩條直線的位置關(guān)系會出現(xiàn)哪些情況?

  2、分類:根據(jù)學(xué)生想象,出示下圖(網(wǎng)格):

  師:老師課前也繪制了這樣6幅圖,想一想,按兩條直線的不同位置關(guān)系,你可以分成哪幾類?說說你的分類依據(jù)。

  3、討論交流,揭示平面內(nèi)兩條直線的位置關(guān)系。

  小結(jié):

  兩條直線,除了“相交”和“不相交”,還可能存在其他的位置關(guān)系嗎?

  板書:

  相交

  兩條直線的位置關(guān)系

  不相交

  二、探究一:垂直

  1、平面內(nèi)兩直線相交構(gòu)成的'4個角的特點。

  師:首先來研究平面內(nèi)兩條直線“相交”這一情況。

  師:平面內(nèi)直線a和直線b相交與點O,已知1=60,誰能馬上求出2、3、4的度數(shù)?你是怎么想的?

  2、平面內(nèi)兩直線相交的特殊情況。

  提問:這4個角的度數(shù)有什么特點?固定點O,旋轉(zhuǎn)后,情況還是一樣嗎?

 。ㄐD(zhuǎn)至垂直)

  師:現(xiàn)在兩條直線相交成直角了。繼續(xù)旋轉(zhuǎn)呢?

  除了相交成直角以外,其余的情況,都是任意相交的。

  板書: 任意相交

  相交

  平面內(nèi)兩條直線的位置關(guān)系 相交成直角

  不相交

  3、練習(xí):

  下列圖形中哪兩條直線相交成直角。

  ○1 ○2 ○3

  4、揭示概念。(媒體出示)

  板書: 任意相交

  相交

  平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直

  不相交

  5、平面圖形中的垂直現(xiàn)象。

  下面圖形中哪些角是直角?在圖上用直角記號標(biāo)出。哪些線段互相垂直?用垂直符號表示。

  ○1 ○2 ○3

  記作: 記作: 記作:

  6、動手操作。

  三、探究二:平行

  1、提問:長方形中,如果把相對的兩條邊無限延長,是否會在某一點相交?

  2、揭示概念

  板書: 任意相交

  相交

  平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直

  不相交 平行

  3、平面圖中的平行現(xiàn)象

  4、練習(xí)

 。1)說說下列哪些直線互相垂直?哪些互相平行?

  將圖2改為:

  提問:e和f還平行嗎?

  將圖2改為:

  當(dāng)角1等于角2時,e和f還平行嗎?

 。2)滲透“同一”平面觀念

  長方體中,這兩條棱相交嗎?那么他們平行嗎?

  板書: 任意相交

  相交

  同一平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直

  不相交 平行

  四、生活中的平行與垂直

  1、舉例:生活中,你有沒有發(fā)現(xiàn)“垂直與平行”的現(xiàn)象?

  2、提問:為什么這些地方要設(shè)計成“垂直”或者“平行”?

  五、課堂總結(jié)

初中數(shù)學(xué)優(yōu)秀教案15

  一、課題引入

  為了讓學(xué)生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅實的基礎(chǔ).

  對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.

  二、課題研究

  在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.

  為了準確表達諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).

  我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.

  在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.

  于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.

  利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.

  借助實際例子能夠讓學(xué)生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.

  三、鞏固練習(xí)

  例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?

  思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.

  特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.

  再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的`位置,則將其水位記作0cm.

  例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當(dāng)天的收盤價與開盤價的漲跌情況如下表:單位:元

  日期周二周三周四周五

  開盤+0.16+0.25+0.78+2.12

  收盤-0.23-1.32-0.67-0.65

  當(dāng)日收盤價

  試在表中填寫周二到周五該股票的收盤價.

  思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當(dāng)天的開盤價降低了0.23元”.

  因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進行計算:

  周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.

【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:

初中數(shù)學(xué)優(yōu)秀教案09-29

初中數(shù)學(xué)優(yōu)秀教案【精】12-30

初中數(shù)學(xué)優(yōu)秀教案【薦】12-28

初中數(shù)學(xué)優(yōu)秀教案(15篇)11-25

初中數(shù)學(xué)優(yōu)秀教案(精選15篇)12-24

初中數(shù)學(xué)優(yōu)秀教案精選15篇12-22

初中數(shù)學(xué)優(yōu)秀教案15篇11-24

初中數(shù)學(xué)優(yōu)秀教案(精選14篇)06-15

初中數(shù)學(xué)優(yōu)秀教案匯編15篇11-28