小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》
作為一名無私奉獻(xiàn)的老師,時常需要用到教案,借助教案可以更好地組織教學(xué)活動。那么寫教案需要注意哪些問題呢?下面是小編整理的小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》,希望能夠幫助到大家。
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》1
學(xué)內(nèi)容:教科書第46—47頁練習(xí)十一的第8—13題。
教學(xué)目的:通過綜合練習(xí),使學(xué)生進(jìn)一步掌握有關(guān)圓柱的表面積和體積的計算。
教具準(zhǔn)備:長方體、正方體和圓拄模型各一個。
教學(xué)過程:
一、復(fù)習(xí)
1.復(fù)習(xí)平面圖形。
教師:我們已經(jīng)學(xué)過的平面圖形有哪些?
引導(dǎo)學(xué)生總結(jié)出已學(xué)過的平面圖形有:長方形、正方形、平行四邊形、三角形、梯形和圓。
教師:它們各自的面積公式是什么?
指名學(xué)生分別回答,教師板書在黑板上:
長方形的面積=長×寬
正方形的面積=邊長×邊長
平行四邊形的面積=底×高
三角形的面積= ×底×高
梯形的面積:= ×(上底+下底)×高
圓的面積=∏×R×R
2.復(fù)習(xí)立體圖形。
教師:我們已經(jīng)學(xué)過的立體圖形有哪些?
引導(dǎo)學(xué)生總結(jié)出已經(jīng)學(xué)過的立體圖形有:長方體、正方體和圓柱。
教師:它們的表面積和體積怎樣求?
出示長方體、正方體和圓柱的模型,引導(dǎo)學(xué)生通過觀察回憶它們表面積和體積的
計算公式·,教師列成表格板書在黑板上:
教師:這三個立體圖形的體積公式能否統(tǒng)一成一個呢?
使學(xué)生明確長方體、正方體和圓柱的體積公式可以統(tǒng)一寫成:“底面積×高”。
教師:—如果長方體與圓柱的底面積和高分別相等,那么它們的體積相等嗎?為什么?
二、課堂練習(xí)
l。做練習(xí)十一的第8、9題。
讓學(xué)生獨立做在練習(xí)本上,教師行間巡視,做完后集體訂正。
2。做練習(xí)十一的第10題。
這是一道聯(lián)系實際的題目。讀題后,教師提問:
“這道題要求前輪轉(zhuǎn)動一周壓路的面積。實際上是求什么?”
“那么這個圓柱的底面直徑和高分別是多少呢?”
使學(xué)生弄清求前輪轉(zhuǎn)動一周壓路的面積,就是求前輪這個圓柱的側(cè)面積。而這個圓柱的底面直徑就是前輪的直徑,這個圓柱的高就是前輪的輪寬。
分析后。讓學(xué)生做在練習(xí)本上。做完后集體訂正。
3.做練習(xí)十一的第11題。
指名一學(xué)生讀題后.教師提問:
“這道題已知什么?求什么?”
“裝了 桶水是什么意思?”
要使學(xué)生明白:裝了 桶水就是說水的體積是水桶體積的 即水的體積是24× 立方分米。根據(jù)圓柱體積的計算公式,可以直接計算,也可以用列方程來解。
設(shè)水面高為X分米。
24× =7.5×X
X=18十7.5
X=2.4
4.做練習(xí)十一的第12題。
第(1)題,引導(dǎo)學(xué)生從圓柱的體積計算公式人手,由于“圓柱的體積=底面積×高”,所以當(dāng)?shù)酌娣e相等財,高和體積成正比例。
第(2)題,啟發(fā)學(xué)生根據(jù)第(1)題的結(jié)論列出比例式進(jìn)行解答:即:
設(shè)另一個圓柱的體積為x立方分米:
=
x=
X=40
5.做練習(xí)十一的`第13題。
讀題后,教師提問:
“兩個圓柱的底面半徑相等說明了什么?”
“要求第二個圓柱的體積比第一個多多少,應(yīng)該先求什么?怎樣求?”
啟發(fā)學(xué)生仿照第12題,利用比例的知識先求出第二個圓柱的體積.再求出第二個圓柱的體積比第一個多多少立方厘米。
三、選做題
讓學(xué)有余力的學(xué)生做練習(xí)十一的第14、15題和思考題。
1,練習(xí)十一的第14題。
教學(xué)前教師要準(zhǔn)備一個實物,或者制作一個教具。通過對教具的觀察,使學(xué)生明確鋼管的體積就是大圓柱的體積減去中間一個小圓柱的體積后剩下的體積,即鋼管體積=大圓柱的體積一小圓柱的體積。
2.練習(xí)十一的第15題。
這道題是有關(guān)體積計算的應(yīng)用題。要先求出圓柱形糧囤的容積后,再計算其他問題就比較簡便。
3.思考題。
這道題需要知道鐵塊的體積等于它完全浸入水里后所排開水的體積。那么,只要求出鐵塊從圓柱形容器中的水里取出后,水面下降后所減少的這部分圓柱形水柱的體積,就是鐵塊的體積。
具體解法: 3.14×( )’×2
=3.14×25×2
=157(立方米)
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》2
教學(xué)內(nèi)容:
教科書第44頁的例5,完成第44頁;“做一做”的第2題和練習(xí)十一的第3—7題。
教學(xué)目的:
使學(xué)生掌握圓柱體積的計算公式,并能運用公式解決一些簡單的實際問題。
教具準(zhǔn)備:
一個圓柱形物體,一個圓柱形杯子。
教學(xué)過程:
一、復(fù)習(xí)
1、口算。
出示練習(xí)十一的第3題(可以用卡片或用投影出示):
、4、5十0、37 0、25×8 5、8十2、9
、7、2÷9 6、1—4、8
2,復(fù)習(xí)圓柱的體積。
教師:我們是怎樣得到圓柱體積的計算公式的?圓柱體積的計算公式是什么?
指名學(xué)生敘述一下圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。圓柱體積的計算公式是“底面積×高”,即:V=SH。
二、新課
1、教學(xué)圓柱體積公式的另一種形式。
教師:請大家想一想,如果已知圓柱底面的半徑r和高H,圓柱體積的計算公式
應(yīng)該怎樣表達(dá)?
引導(dǎo)學(xué)生根據(jù)底面積S與半徑r的關(guān)系可以知道:S=∏×R × R,所以圓柱體積的計算公式也可以寫成:V=∏×R×R×H。
2、教學(xué)例5。
出示例5。
(1)教師提出下面問題幫助學(xué)生理解題意:
、龠@道題已知什么?求什么?
、谇笏暗'容積是什么意思?根據(jù)什么公式?為什么?
要使學(xué)生理解水桶的容積就是水桶能容納物體的體積,求水桶的容積就是求這個圓柱形水桶內(nèi)部的體積。所以可以根據(jù)圓柱體積的計算公式來計算。
、嘁笏暗娜莘e應(yīng)該先求什么?
要使學(xué)生明確,水桶的底面積在題中沒有直接給出,因此要先求水桶的底面積,再求水桶的容積。
、偎暗牡酌娣e應(yīng)該怎樣求?
(2)讓學(xué)生敘述解答過程,教師板書。
求出水捅容積之后,教師提問:最后結(jié)果應(yīng)該怎樣取值?
使學(xué)生明確要把計量單位改寫成立方分米,取近似值時要采用去尾法。
(3)做第44頁。做一做”的第2題。
讓學(xué)生獨立做在練習(xí)本上,做完后集體訂正。
三、課堂練習(xí)
1、做練習(xí)十一的第4題。
這是一道實際測量、計算的題目,可以分組進(jìn)行測量和計算,每組的茶杯可以是不一樣的。教師可以先讓學(xué)生講一下自己的測量方法,再進(jìn)行測量和計算。
學(xué)生測量時,教師行間巡視,注意察看學(xué)生測量的方法是否正確,對有困難的學(xué),生要及時給予指導(dǎo)。
做完后集體訂正,要注意強(qiáng)調(diào)不能只計算出茶杯的體積,還要計算出可以裝多少克水,以及取近似數(shù)的方法。
2、做練習(xí)十一的第5題。
讀題后、教師可以先后提問:
“這道題要求的是什么?”
“題目只告訴了圓柱形糧食囤的底面半徑和高,要求這個糧囤能裝稻谷多少立方米,應(yīng)該先求什么?怎樣求?”
指名學(xué)生回答后,再讓學(xué)生獨立做在練習(xí)本上,教師巡視。
做完后集體訂正,強(qiáng)調(diào)得數(shù)的取舍方法。
3、做練習(xí)十一的第6題。
教師:這道題已知什么?求什么?
指名學(xué)生回答后,再問:應(yīng)該怎樣求?
引導(dǎo)學(xué)生從圓柱的體積計算公式入手,可以直接用算術(shù)方法計算,也可以列方程來解答。
4、做練習(xí)十一的第7題。
讀題后,教師可提出以下問題:
“這道題要求的是什么?”
“怎樣利用已知條件求出這個油桶的容積?”
“題目中的條件和問題的單位不統(tǒng)一。應(yīng)該怎樣改寫更簡便?”分別指名學(xué)生回答。要使學(xué)生明白,這里可以先將40厘米和50厘米分別改寫成4分米和5分米計算更簡便。
讓學(xué)生獨立做在練習(xí)本上,教師行間巡視,注意察看學(xué)生對圓柱體積計算方法是否掌握,計量單位是否按照題目的要求進(jìn)行改寫,最后得數(shù)的取舍是否正確。
做完后集體訂正,指名學(xué)生說說自己是怎樣計算的。
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》3
教學(xué)目標(biāo):
1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。
2、經(jīng)歷類比猜想――驗證的探索圓柱體積的計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、引導(dǎo)學(xué)生探索和解決問題,滲透、體驗知識間相互“轉(zhuǎn)化”的思想方法。
教學(xué)重、難點:掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)流程:
一、復(fù)習(xí)引入
1、什么是體積?
2、怎樣計算長方體和正方體的體積?
3、引入:這學(xué)期我們新學(xué)了兩個立體圖形,分別是?大家想不想知道圓柱的體積怎樣計算?這就是我們今天這節(jié)課要研究的問題。
二、活動導(dǎo)學(xué)、精講點撥
1、觀察比較,建立猜想
引導(dǎo)學(xué)生觀察例4的三個立體圖形,提問:
、 三個立體圖形的底面積和高都相等,它們的體積有什么關(guān)系?
⑵ 長方體和正方體的體積一定相等嗎?為什么?
、 猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?
2、實驗操作
。1)談話:大家都認(rèn)為圓柱的體積與長方體、正方體的體積可能是相等的,那你能否再大膽猜一下,圓柱的體積計算公式會是什么呢?指名說。(等于底面積乘高)。
大家都認(rèn)為圓柱的體積=底面積×高,老師先寫下來,這個公式對不對呢?(打上問號)這只是我們的猜想,我們還需要驗證。那用什么辦法驗證呢?請獨立思考。
。ㄊ帜弥鴪A柱,指著底面)老師提示一下:想一想圓的面積公式是怎么推導(dǎo)出來的?我們能不能將圓柱轉(zhuǎn)化成已經(jīng)學(xué)過的立體圖形呢?
。2)出示底面被分成16等份的圓柱,談話:老師這里有一個圓柱,底面被平均分成了16份,你能想辦法把這個圓柱轉(zhuǎn)化成已經(jīng)學(xué)過的立體圖形嗎?
(3)指名兩位同學(xué)上臺操作教具,讓學(xué)生觀察。
師:大家看,圓柱的底面被拼成了什么圖形?(長方形);再看整個圓柱,它又被拼成了什么形狀?(長方體)也就是說,把圓柱的底面平均分成16份,切開后能拼成一個近似的長方體。
(4)引導(dǎo)想像:如果把底面平均分的份數(shù)越來越多,結(jié)果會怎么樣?(閉上眼睛,在頭腦里想象。)
演示一組動畫(將圓柱底面等分成32份、64等份……)課件演示。問:和你的想象一樣嗎?使學(xué)生清楚地認(rèn)識到:拼成的立體圖形會越來越接近長方體。
3、觀察比較,推導(dǎo)公式
。1)提問:拼成的長方體與原來的圓柱有什么關(guān)系?出示討論題。
a、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?
b、拼成的長方體的高與原來圓柱的高有什么關(guān)系?
c、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?
指出:長方體的體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。
。2)想一想:怎樣求圓柱的體積?為什么?
根據(jù)學(xué)生的回答小結(jié)并板書圓柱的'體積公式:
圓柱的體積=底面積×高
。3)如果用v表示圓柱的體積,s表示圓柱的底面積,h表示圓柱的高,那么,圓柱的體積計算公式你能寫出來嗎?試試看。
指名同學(xué)到黑板板書:v=sh
我們發(fā)現(xiàn)圓柱拼成長方體后體積,底面積,高沒有變,那什么變了呢?
指名回答。(形狀變了;表面積變大)
4、回顧反思
回顧圓柱體積公式的探索過程,你有什么體會?
三、練習(xí)運用、遷移創(chuàng)新
1、做練習(xí)三第1題。
讓學(xué)生口頭列式并完成填表。問:要求體積必須知道底面積和高嗎?
2、教學(xué)“試一試”。
、抛寣W(xué)生列式解答后交流算法。
⑵討論:知道什么條件就一定能算出圓柱的體積了?分別怎么算?
(s和h,r和h,d和h,c和h)
3、做“練一練”第1題。
⑴說一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?
、聘髯跃毩(xí),并指名板演。
、菍φ瞻逖,說說計算過程。
4、做“練一練”第2題。
已知底面周長和高,該怎么求它的體積呢?引導(dǎo)學(xué)生先根據(jù)底面周長求出底面積。
5、做練習(xí)三第2題。
學(xué)生讀題后,提問:計算電飯煲的容積,為什么要從里面量尺寸?
6、拓展題
把一個高是20厘米的圓柱切拼成一個近似的長方體,表面積比原來增加了200平方厘米,圓柱的體積是多少立方厘米?
四、課堂小結(jié)
這節(jié)課我們學(xué)習(xí)了什么?有哪些收獲?還有什么疑問?
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》4
教材分析
1、《圓柱的體積》是在學(xué)生初步認(rèn)識了圓柱體的基礎(chǔ)上,進(jìn)一步研究圓柱體的特征,讓學(xué)生比較深入地研究立體幾何圖形,是學(xué)生發(fā)展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學(xué)習(xí),可以培養(yǎng)學(xué)生形成初步的空間觀念。根據(jù)本節(jié)課的性質(zhì)特點和六年級學(xué)生以形象思維為主、空間觀念還比較薄弱的特點,2、本節(jié)核心內(nèi)容的功能和價值,為下一步學(xué)習(xí)“圓錐的體積”打下基礎(chǔ)。
學(xué)情分析
六年級的學(xué)生已經(jīng)有了較豐富的生活經(jīng)驗,這些感性經(jīng)驗是他們進(jìn)一步學(xué)習(xí)的基礎(chǔ),本節(jié)課的學(xué)習(xí)過程正是讓學(xué)生的感性經(jīng)驗上升到理性經(jīng)驗的過程,符合學(xué)生的年齡特征和認(rèn)知規(guī)律,在這一過程中,能使學(xué)生體會到認(rèn)識事物和歸納事物特征的方法,學(xué)會運用數(shù)學(xué)的思維方式去認(rèn)識世界。
由于圓柱體積計算是圓錐體積計算的`基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點。其中,圓柱體積計算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來推導(dǎo),推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點。
教學(xué)目標(biāo)
1、知識與能力:通過推導(dǎo)圓柱體積公式的過程,向?qū)W生滲透轉(zhuǎn)化思想,建立空間觀念,培養(yǎng)學(xué)生判斷、推理的能力和遷移能力。
2、過程與方法:結(jié)合具體情境和實踐活動,理解圓柱體積的含義。探索并掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、情感、態(tài)度、價值觀:感悟數(shù)學(xué)知識的內(nèi)在聯(lián)系,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點和難點
由于圓柱體積計算是圓錐體積計算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點。其中,圓柱體積計算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來推導(dǎo),推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點。
教學(xué)過程
教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
(1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?
(2)你能用以前學(xué)過的方法計算出這些水的體積嗎?
。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。
。4)說一說長方體體積的計算公式。
2、創(chuàng)設(shè)問題情景。
如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?
今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)
二、新課教學(xué):
設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
1、探究推導(dǎo)圓柱的體積計算公式。
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。
、侔褕A柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)
②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
、蹐A柱的體積=底面積×高字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》5
教學(xué)目標(biāo):
1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力。
3、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。
教學(xué)重點:
掌握圓柱體積的計算公式。
教學(xué)難點:
靈活應(yīng)用圓柱的體積公式解決實際問題。
教學(xué)準(zhǔn)備:小黑板
教學(xué)過程:
一、復(fù)習(xí):
1、復(fù)習(xí)圓柱體積的推導(dǎo)過程:
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。
2、復(fù)習(xí)長方體的.體積公式后,讓學(xué)生獨立完成練習(xí)三第6題,并指名板演。
二、解決實際問題:
1、練習(xí)五第7題:
學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。
2、練習(xí)五第5題:
。1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=V÷S。也可以列方程解答。
。2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)五第8題:
。1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨立完成,集體訂正。
4、練習(xí)五第9、10題:
(1)學(xué)生獨立審題,完成9、10兩題。
。2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?
。3)指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。
三、全課總結(jié):
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》6
教學(xué)內(nèi)容:圓柱體積公式的推導(dǎo)
教學(xué)目的:
1、 通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,使學(xué)生理解圓柱的體積公式的推導(dǎo)過程。
2、能夠運用公式正確地計算圓柱的體積。
教具準(zhǔn)備:圓柱的體積公式演示課件
教學(xué)過程:
一、復(fù)習(xí)回顧
1、圓柱的側(cè)面積怎么求?
。▓A柱的側(cè)面積=底面周長×高。)
2、長方體的體積怎樣計算?
學(xué)生回答,教師引導(dǎo)學(xué)生想到長方體和正方體體積的統(tǒng)一公式“底面積×高”。
板書:長方體的體積=底面積×高
3、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么?圓柱有幾個底面?有多少條高?
二、回憶導(dǎo)入
師:請大家想一想,我們在學(xué)習(xí)圓的面積時,是怎樣把因變成已學(xué)過的圖形再計算面積的?
讓學(xué)生回憶,說一說圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓的。面積和所拼成的長方形面積之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
師:今天將要學(xué)習(xí)的圓柱的體積大家能不能把圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積?
學(xué)生相互討論,思考應(yīng)怎樣進(jìn)行轉(zhuǎn)化。說出自己想到的方法。
師:這節(jié)課我們就讓我們一起來研究圓柱的體積。
板書課題:圓校的體積
三、新課講授
師:看到這個標(biāo)題你想知道的什么?
學(xué)生回答后老師出示教學(xué)目標(biāo)及重難點
1、圓柱體積計算公式的推導(dǎo)。
師出示一個圓柱,讓學(xué)生觀察底面提問:“大家看,這是不是一圓?”(是。)
“這是一個圓,那么要求這個圓的面積,剛才我們已經(jīng)復(fù)習(xí)了,可以用什么方法求出它的面積?”
學(xué)生很容易想到可以將圓轉(zhuǎn)化成長方形來求出圓的面積,于是教師可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引導(dǎo)學(xué)生觀察:沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊。展示給學(xué)生看,問:現(xiàn)在把底面切成了16份,應(yīng)該怎樣把它拼成一個長方形?
學(xué)生回答后,老師操作演示,“大家看,圓柱的底面被拼成了什么圖形?”
生:長方形。
師:大家再看看整個圓柱,它又被拼成了什么形狀?
。ㄓ悬c接近長方體:)
師:由于我們分得不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。
師:把圓柱拼成近似的長方體后,體積發(fā)生變化沒有?圓柱的體積可以怎樣求?
引導(dǎo)學(xué)生想到由于體積沒有發(fā)生變化,所以可以通過求切拼后的長方體的體積來求圓柱的體積。
師:“長方體的體積等于什么?”讓全班學(xué)生齊答,教師接著板書:“長方體的體積=底面積×高”。
師:請大家觀察,拼成的'近似長方體的底面積與原來圓柱的哪一部分有關(guān)系?近似長方體的高與原來圓柱的哪一部分有關(guān)系?
通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
板書:圓柱的體積=底面積×高
師:如果用V表示圓柱的體積,S表示圓柱的底面積,H表示圓柱的高,可以得到圓柱的體積公式; V=SH(板書)
2、公式應(yīng)用
出示例4。
(1)教師指名學(xué)生分別回答下面的問題:
①這道題已知什么?求什么?
、谀懿荒芨鶕(jù)公式直接計算?
③計算之前要注意什么?
通過提問,使學(xué)生明確計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位。
。2)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的?
①V=SH=50×2.1=105
答:它的體積是105立方厘米。
、2.1米;210厘米
V=SH=50×210=10500
答:它的體積是10500立方厘米。
、50平方厘米=0,5平方米
V=SH=0.5×2,1=1.05
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單。對不正確的說說錯在什么地方。
四、鞏固練習(xí):
1、做“做一做”的第1題。
讓學(xué)生獨立做后集體訂正。
2、完成練習(xí)八的1、2題
這兩道題分別是已知底面積(或直徑)和高,求圓柱體積的習(xí)題。要求學(xué)生審題后,知道底面直徑的要先求出底面積,再求圓柱的體積。
3、能力擴(kuò)展
五:課堂總結(jié):
通過這節(jié)課的學(xué)習(xí),你有什么收獲?你是怎樣聯(lián)系學(xué)過的知識進(jìn)行學(xué)習(xí)的。
六:布置作業(yè):
練習(xí)十一的第1—2題。
這兩道題分別是已知底面積(或直徑)和高,求圓柱體積的習(xí)題。要求學(xué)生審題后,知道底面直徑的要先求出底面積,再求圓柱的體積。
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》7
教學(xué)目標(biāo)
1.理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式.
2.會運用公式計算圓柱的體積.
教學(xué)重點
圓柱體體積的計算.
教學(xué)難點
理解圓柱體體積公式的推導(dǎo)過程.
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
(一)教師提問
1.什么叫體積?怎樣求長方體的體積?
2.圓的面積公式是什么?
3.圓的面積公式是怎樣推導(dǎo)的?
(二)談話導(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)
二、新授教學(xué)
。ㄒ唬┙虒W(xué)圓柱體的體積公式.(演示動畫圓柱體的體積1)
1.教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.
2.學(xué)生利用學(xué)具操作.
3.啟發(fā)學(xué)生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.
、劢崎L方體的高就是圓柱的高,沒有變化.
4.學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想.
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
(3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5.啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體.
(2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體.
6.推導(dǎo)圓柱的體積公式
。1)學(xué)生分組討論:圓柱體的`體積怎樣計算?
。2)學(xué)生匯報討論結(jié)果,并說明理由.
因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積高)
。3)用字母表示圓柱的體積公式.(板書:V=Sh)
(二)教學(xué)例4.
1.出示例4
例4.一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50210=10500(立方厘米)
答:它的體積是10500立方厘米.
2.反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
(2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
。ㄈ┙虒W(xué)例5.
1.出示例5
例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
。3.14
。3.14100
=314(平方厘米)
水桶的容積:
31425
。7850(立方厘米)
。7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米.
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1.圓柱體體積公式的推導(dǎo)方法.
2.公式的應(yīng)用.
【小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》】相關(guān)文章:
數(shù)學(xué)教案-圓柱的體積05-02
圓柱的體積05-02
數(shù)學(xué)教案:圓柱的體積(精選16篇)08-04
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》優(yōu)秀09-16
小學(xué)數(shù)學(xué)《圓柱的體積》教案02-04
小學(xué)數(shù)學(xué)《圓柱的體積》教案03-13
圓柱的體積反思03-02