亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

高二年級數(shù)學(xué)教案

時間:2024-08-28 07:22:45 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

高二年級數(shù)學(xué)教案

  作為一名教師,就不得不需要編寫教案,教案有助于順利而有效地開展教學(xué)活動。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家整理的高二年級數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

高二年級數(shù)學(xué)教案

高二年級數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1、進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

  2、在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

  3、進(jìn)一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。

  教學(xué)重點(diǎn):

  問題的提出與解決

  教學(xué)難點(diǎn):

  如何進(jìn)行問題的探究

  教學(xué)方法:

  啟發(fā)探究式

  教學(xué)過程:

  問題:已知{an}是首項(xiàng)為1,公比為的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?

  研究方向提示:

  1、數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;

  2、研究所給數(shù)列的項(xiàng)之間的.關(guān)系;

  3、研究所給數(shù)列的子數(shù)列;

  4、研究所給數(shù)列能構(gòu)造的新數(shù)列;

  5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;

  6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

  針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。

  課堂小結(jié):

  1、研究一個數(shù)列可以從哪些方面提出問題并進(jìn)行研究?

  2、你最喜歡哪位同學(xué)的研究?為什么?

高二年級數(shù)學(xué)教案2

  ●三維目標(biāo)

  (1)知識與技能:

  掌握歸納推理的技巧,并能運(yùn)用解決實(shí)際問題。

  (2)過程與方法:

  通過“自主、合作與探究”實(shí)現(xiàn)“一切以學(xué)生為中心”的理念。

  (3)情感、態(tài)度與價值觀:

  感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)興趣,使其體會到數(shù)學(xué)學(xué)習(xí)的美感。

  ●教學(xué)重點(diǎn)

  歸納推理及方法的`總結(jié)。

  ●教學(xué)難點(diǎn)

  歸納推理的含義及其具體應(yīng)用。

  ●教具準(zhǔn)備

  與教材內(nèi)容相關(guān)的資料。

  ●課時安排

  1課時

  ●教學(xué)過程

  一.問題情境

  (1)原理初探

  ①引入:“阿基米德曾對國王說,給我一個支點(diǎn),我將撬起整個地球!”

  ②提問:大家認(rèn)為可能嗎?他為何敢夸下如此海口?理由何在?

  ③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的?

  從而引入兩則小典故:

  A:一個小孩,為何輕輕松松就能提起一大桶水?

  B:修筑河堤時,奴隸們是怎樣搬運(yùn)巨石的?

高二年級數(shù)學(xué)教案3

  教學(xué)目標(biāo)

  1.掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過程;

  2.能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運(yùn)用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;

  3.通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;

  4.通過橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的思想方法,提高運(yùn)用坐標(biāo)法解決幾何問題的能力;

  5.通過讓中國學(xué)習(xí)聯(lián)盟膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識.

  教學(xué)建議

  教材分析

  1. 知識結(jié)構(gòu)

  2.重點(diǎn)難點(diǎn)分析

  重點(diǎn)是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式.難點(diǎn)是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo).關(guān)鍵是掌握建立坐標(biāo)系與根式化簡的方法.

  橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點(diǎn),在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線是非常重要的.

 。1)對于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對比圓的定義來理解.

  另外要注意到定義中對“常數(shù)”的限定即常數(shù)要大于 .這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于 時軌跡是一條線段;當(dāng)常數(shù)小于 時無軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì).但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準(zhǔn)確性.

 。2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點(diǎn):

 、偾的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方.應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進(jìn)行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

  ②設(shè)橢圓的焦距為 ,橢圓上任一點(diǎn)到兩個焦點(diǎn)的距離為 ,令 ,這些措施,都是為了簡化推導(dǎo)過程和最后得到的方程形式整齊、簡潔,要讓學(xué)生認(rèn)真領(lǐng)會.

 、墼诜匠痰耐茖(dǎo)過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經(jīng)常遇到的問題,又是學(xué)生的難點(diǎn).要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨(dú)留在方程的一側(cè),把其他項(xiàng)移至另一側(cè);②方程中有兩個根式時,需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項(xiàng).

 、芙炭茣蠈E圓標(biāo)準(zhǔn)方程的推導(dǎo),實(shí)際上只給出了“橢圓上點(diǎn)的坐標(biāo)都適合方程 “而沒有證明,”方程 的解為坐標(biāo)的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問題,難度較大,對同學(xué)們不作要求.

 。3)兩種標(biāo)準(zhǔn)方程的橢圓異同點(diǎn)

  中心在原點(diǎn)、焦點(diǎn)分別在 軸上, 軸上的橢圓標(biāo)準(zhǔn)方程分別為: , .它們的相同點(diǎn)是:形狀相同、大小相同,都有 , .不同點(diǎn)是:兩種橢圓相對于坐標(biāo)系的位置不同,它們的焦點(diǎn)坐標(biāo)也不同.

  橢圓的焦點(diǎn)在 軸上 標(biāo)準(zhǔn)方程中 項(xiàng)的分母較大;

  橢圓的焦點(diǎn)在 軸上 標(biāo)準(zhǔn)方程中 項(xiàng)的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

 。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向?qū)W生說明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個軌跡是橢圓;第三是使學(xué)生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

 。1)使學(xué)生了解圓錐曲線在生產(chǎn)和科學(xué)技術(shù)中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣.

  為激發(fā)學(xué)生學(xué)習(xí)圓錐曲線的興趣,體會圓錐曲線知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中提出圓錐曲線要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還可以啟發(fā)學(xué)生尋找身邊與圓錐曲線有關(guān)的例子。

  例如,我們生活的地球每時每刻都在環(huán)繞太陽的軌道——橢圓上運(yùn)行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點(diǎn)上.如果這些行星運(yùn)動的速度增大到某種程度,它們就會沿拋物線或雙曲線運(yùn)行.人類發(fā)射人造地球衛(wèi)星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運(yùn)動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構(gòu)成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關(guān),圓錐曲線在實(shí)際生活中的價值是很高的.

 。2)安排學(xué)生課下切割圓錐形的'事物,使學(xué)生了解圓錐曲線名稱的來歷

  為了讓學(xué)生了解圓錐曲線名稱的來歷,但為了節(jié)約課堂時間,教學(xué)時應(yīng)安排讓學(xué)生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認(rèn)識.

 。3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學(xué)生從感性認(rèn)識入手,逐步上升到理性認(rèn)識,形成正確的概念。

  教師可從太陽、地球、人造地球衛(wèi)星的運(yùn)行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學(xué)生先對橢圓有一個直觀的了解。

  教師可事先準(zhǔn)備好一根細(xì)線及兩根釘子,在給出橢圓在數(shù)學(xué)上的嚴(yán)格定義之前,教師先在黑板上取兩個定點(diǎn)(兩定點(diǎn)之間的距離小于細(xì)線的長度),再讓兩名學(xué)生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(diǎn)(兩定點(diǎn)之間的距離大于細(xì)線的長度),然后再請剛才兩名學(xué)生按同樣的要求作圖。學(xué)生通過觀察兩次作圖的過程,總結(jié)出經(jīng)驗(yàn)和教訓(xùn),教師因勢利導(dǎo),讓學(xué)生自己得出橢圓的嚴(yán)格的定義。這樣,學(xué)生對這一定義就會有深刻的了解。

 。4)將提出的問題分解為若干個子問題,借助多媒體課件來體現(xiàn)橢圓的定義的實(shí)質(zhì)

  在教學(xué)時,可以設(shè)置幾個問題,讓學(xué)生動手動腦,獨(dú)立思考,自主探索,使學(xué)生根據(jù)提出的問題,利用多媒體,通過觀察、實(shí)驗(yàn)、分析去尋找解決問題的途徑。在橢圓的定義的教學(xué)過程()中,可以提出“到兩定點(diǎn)的距離的和為定值的點(diǎn)的軌跡一定是橢圓嗎”,讓學(xué)生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內(nèi)涵,這樣就使得學(xué)生對橢圓的定義留下了深刻的印象。

 。5)注意橢圓的定義與橢圓的標(biāo)準(zhǔn)方程的聯(lián)系

  在講解橢圓的定義時,就要啟發(fā)學(xué)生注意橢圓的圖形特征,一般學(xué)生比較容易發(fā)現(xiàn)橢圓的對稱性,這樣在建立坐標(biāo)系時,學(xué)生就比較容易選擇適當(dāng)?shù)淖鴺?biāo)系了,即使焦點(diǎn)在坐標(biāo)軸上,對稱中心是原點(diǎn)(此時不要過多的研究幾何性質(zhì)).雖然這時學(xué)生并不一定能說明白為什么這樣選擇坐標(biāo)系,但在有了一定感性認(rèn)識的基礎(chǔ)上再講解選擇適當(dāng)坐標(biāo)系的一般原則,學(xué)生就較為容易接受,也向?qū)W生逐步滲透了坐標(biāo)法.

 。6)推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時教師要注意化解難點(diǎn),適時地補(bǔ)充根式化簡的方法.

  推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時,由于列出的方程為兩個跟式的和等于一個非零常數(shù),化簡時要進(jìn)行兩次平方,方程中字母超過三個,且次數(shù)高、項(xiàng)數(shù)多,教學(xué)時要注意化解難點(diǎn),盡量不要把跟式化簡的困難影響學(xué)生對橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程的整體認(rèn)識.通過具體的例子使學(xué)生循序漸進(jìn)的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨(dú)留在方程的一邊,把其他各項(xiàng)移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項(xiàng).(為了避免二次平方運(yùn)算)

 。7)講解了焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程后,教師要啟發(fā)學(xué)生自己研究焦點(diǎn)在y軸上的標(biāo)準(zhǔn)方程,然后鼓勵學(xué)生探索橢圓的兩種標(biāo)準(zhǔn)方程的異同點(diǎn),加深對橢圓的認(rèn)識.

 。8)在學(xué)習(xí)新知識的基礎(chǔ)上要鞏固舊知識

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程中要注意進(jìn)一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標(biāo)準(zhǔn)方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向?qū)W生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學(xué)生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實(shí)際上學(xué)生在遇到一些具體的題目時,還需要具體問題具體分析.

 。9)要突出教師的主導(dǎo)作用,又要強(qiáng)調(diào)學(xué)生的主體作用,課上盡量讓全體學(xué)生參與討論,由基礎(chǔ)較差的學(xué)生提出猜想,由基礎(chǔ)較好的學(xué)生幫助證明,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神。

高二年級數(shù)學(xué)教案4

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  1、知識與技能:

 。1)推廣角的概念、引入大于角和負(fù)角;

 。2)理解并掌握正角、負(fù)角、零角的定義;

  (3)理解任意角以及象限角的概念;

 。4)掌握所有與角終邊相同的角(包括角)的表示方法;

 。5)樹立運(yùn)動變化觀點(diǎn),深刻理解推廣后的角的概念;

 。6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣;

  (7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識。

  2、過程與方法:

  通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

  3、情態(tài)與價值:

  通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認(rèn)識,即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會運(yùn)用運(yùn)動變化的觀點(diǎn)認(rèn)識事物。

  教學(xué)重難點(diǎn)

  重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

  難點(diǎn):終邊相同的角的表示。

  教學(xué)工具

  投影儀等。

  教學(xué)過程

  【創(chuàng)設(shè)情境】

  思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1。25小時,你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?

  我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。

  【探究新知】

  1、初中時,我們已學(xué)習(xí)了角的概念,它是如何定義的呢?

  [展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1—1,一條射線由原來的位置,繞著它的端點(diǎn)o按逆時針方向旋轉(zhuǎn)到終止位置OB,就形成角a。旋轉(zhuǎn)開始時的射線叫做角的始邊,OB叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn)。

  2、如上述情境中所說的校準(zhǔn)時鐘問題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學(xué)們思考一下:能否再舉出幾個現(xiàn)實(shí)生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說明了什么問題?又該如何區(qū)分和表示這些角呢?

  [展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的'角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle)。

  3、學(xué)習(xí)小結(jié):

 。1)你知道角是如何推廣的嗎?

 。2)象限角是如何定義的呢?

 。3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。

  課后習(xí)題

  作業(yè):

  1、習(xí)題1.1A組第1,2,3題。

  2。多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

  進(jìn)一步理解具有相同終邊的角的特點(diǎn)。

高二年級數(shù)學(xué)教案5

  高中數(shù)學(xué)菱形教案

  一、教學(xué)目標(biāo)

  1、把握菱形的判定。

  2、通過運(yùn)用菱形知識解決具體問題,提高分析能力和觀察能力。

  3、通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好。

  4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想。

  二、教法設(shè)計(jì)

  觀察分析討論相結(jié)合的方法

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1、教學(xué)重點(diǎn):菱形的判定方法。

  2、教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用。

  四、課時安排

  1課時

  五、教具學(xué)具預(yù)備

  教具(做一個短邊可以運(yùn)動的平行四邊形)、投影儀和膠片,常用畫圖工具

  六、師生互動活動設(shè)計(jì)

  教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點(diǎn)撥

  七、教學(xué)步驟

  復(fù)習(xí)提問

  1、敘述菱形的定義與性質(zhì)。

  2、菱形兩鄰角的比為1:2,較長對角線為 ,則對角線交點(diǎn)到一邊距離為________.

  引入新課

  師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

  生答:定義法。

  此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法。

  講解新課

  菱形判定定理1:四邊都相等的四邊形是菱形。

  菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形。圖1

  分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形。

  分析判定2:

  師問:本定理有幾個條件?

  生答:兩個。

  師問:哪兩個?

  生答:(1)是平行四邊形(2)兩條對角線互相垂直。

  師問:再需要什么條件可證該平行四邊形是菱形?

  生答:再證兩鄰邊相等。

 。ㄓ蓪W(xué)生口述證實(shí))

  證實(shí)時讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,師問:對角線互相垂直的四邊形是菱形嗎?為什么?

  可畫出圖,顯然對角線 ,但都不是菱形。

  菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):

  注重:(2)與(4)的.題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件。

  例4 已知: 的對角錢 的垂直平分線與邊 、 分別交于 、 ,如圖。

  求證:四邊形 是菱形(按教材講解)。

  總結(jié)、擴(kuò)展

  1、小結(jié):

 。1)歸納判定菱形的四種常用方法。

 。2)說明矩形、菱形之間的區(qū)別與聯(lián)系。

  2、思考題:已知:

  求證:四邊形 為菱形。

  八、布置作業(yè)

  九、板書設(shè)計(jì)

  十、隨堂練習(xí)

  教材P153中1、2、3

【高二年級數(shù)學(xué)教案】相關(guān)文章:

高二數(shù)學(xué)教案01-05

高二數(shù)學(xué)教案04-20

高二數(shù)學(xué)教案范文11-07

人教版高二數(shù)學(xué)教案02-10

高二數(shù)學(xué)教案優(yōu)秀05-30

高二數(shù)學(xué)教案14篇06-12

人教版高二數(shù)學(xué)教案范文09-29

高二數(shù)學(xué)教案1篇[經(jīng)典]07-22

高中高二數(shù)學(xué)教案11-14