亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數(shù)學(xué)優(yōu)秀教案

時間:2023-01-07 01:58:02 初中數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)優(yōu)秀教案(精選14篇)

  作為一名默默奉獻的教育工作者,往往需要進行教案編寫工作,借助教案可以讓教學(xué)工作更科學(xué)化。那么你有了解過教案嗎?下面是小編整理的初中數(shù)學(xué)優(yōu)秀教案(精選14篇),歡迎大家借鑒與參考,希望對大家有所幫助。

初中數(shù)學(xué)優(yōu)秀教案(精選14篇)

  初中數(shù)學(xué)優(yōu)秀教案 篇1

  一、教材內(nèi)容及設(shè)置依據(jù)

  【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運算的回顧,學(xué)習(xí)包括分數(shù)和小數(shù)的有理數(shù)的加減混合運算,理解其方法;應(yīng)用有理數(shù)的加減混合運算,解決實際問題。

  【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應(yīng)日常生活準備條件)、可接受性原則(即考慮學(xué)生的認識水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。

  二、教材的地位和作用

  本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識的延伸和加強,同時又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運算的基礎(chǔ),

  特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了

  類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。

  三、對重點、難點的處理

  【對重點的處理】本節(jié)的重點是有理數(shù)加減混合運算的方法及在實際生活中的應(yīng)用。為了突出重點,教師應(yīng)盡量從實際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會運算的方法。同時我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:1、知識鞏固型2、實際應(yīng)用型3、方法多變型4、知識拓展型等。

  【對難點的`處理】對于難點的處理,因為新教材“強調(diào)要給學(xué)生足夠的空間和時間”,因此教學(xué)時我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗和已有的知識經(jīng)驗出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵學(xué)生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運算可以統(tǒng)一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學(xué)生通過具體情境對“代數(shù)和”加以體會)

  四、關(guān)于教學(xué)方法的選用

  根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,本節(jié)課可采用的方法:

  1、情境體驗:通過教師創(chuàng)設(shè)貼近學(xué)生生活實際的教學(xué)情境,讓學(xué)生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學(xué)生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。

  2、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點,符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的引導(dǎo)啟發(fā),充分調(diào)動學(xué)生學(xué)習(xí)的主動性。

  3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個“學(xué)習(xí)共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補充,分享彼此的思考、經(jīng)驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學(xué)生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。

  五、關(guān)于學(xué)法的指導(dǎo)

  “授人以魚,不如授人以漁”,在教給學(xué)生知識的同時,要教給他們好的學(xué)習(xí)方法,讓他們“會學(xué)習(xí)”在本節(jié)課的教學(xué)中,在提出問題后,要鼓勵學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學(xué)是生活實際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實際問題的意識、愿望。

  六、課時安排:1課時

  教學(xué)程序:

  一、復(fù)習(xí)鋪墊:

  首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進行速算比賽,看誰做的又對又快。

  1、45+(-23)2、9-(-5)

  3、-28-(-37)4、(-13)+0

  5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

  從四排學(xué)生中個推選一名學(xué)生代表板演6、7、8、題。

  通過比賽的方式,符合學(xué)生的心理特點,迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動力,激發(fā)了學(xué)習(xí)的興趣。

  然后教師與學(xué)生一起對題目進行評判,對優(yōu)勝的學(xué)生進行表揚,對其他學(xué)生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運算奠定了基礎(chǔ)。

  二、新知探索:

  1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作

  上升4.5千米+4.5千米

  下降3.2千米-3.2千米

  上升1.1千米+1.1千米

  下降1.4千米-1.4千米

  此時飛機比起飛點高了多少米?

  讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法:

 、4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4)=1.3+1.1-1.4

 。2.4+(-1.4)=2.4-1.4

  =1千米=1千米

  教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運算可以統(tǒng)一成加法;加法運算可以寫成省略括號及前面加號的形式。使學(xué)生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。通過小組合作,探究討論,讓每一個學(xué)

  初中數(shù)學(xué)優(yōu)秀教案 篇2

  一、教學(xué)內(nèi)容

  義務(wù)教育課程標準實驗教科書教科書(人教版)七年級下冊第五章相交線與平行線,

  5.4平移

  二、教學(xué)目標

  知識與技能目標:

  掌握平移的概念,發(fā)現(xiàn)并歸納平移的性質(zhì),學(xué)會利用平移繪制某些特殊的圖案.

  過程與方法目標:

  經(jīng)歷操作、探究、歸納和總結(jié)平移性質(zhì)的過程,感受數(shù)學(xué)知識的發(fā)生和發(fā)展,培養(yǎng)學(xué)生的抽象概括能力;體會從數(shù)學(xué)的角度理解問題,提高綜合運用所學(xué)知識和技能解決問題的水平.

  情感、態(tài)度與價值觀目標:

  通過豐富多彩的活動,讓學(xué)生感受數(shù)學(xué)充滿了探索性與創(chuàng)造性,激發(fā)學(xué)生的探究熱情,并培養(yǎng)學(xué)生良好的團隊合作意識和創(chuàng)新精神.

  三、教學(xué)重點、難點

  重點:學(xué)平移的有關(guān)定義及平移的性質(zhì).

  難點:

  1、對平移的兩要素的理解;

  2、如何運用平移的性質(zhì)解決問題.

  四、學(xué)情分析

  對于理解掌握平移的概念及性質(zhì),學(xué)生要對生活中的平移現(xiàn)象有一些感性的認識,同時必須具有線段相等及平行線的判定等知識儲備.七年級的孩子正處于思維活躍,模仿能力強,對新知事物滿懷探求欲望的階段,同時他們也具備了一定的學(xué)習(xí)能力,在老師的指導(dǎo)下,能針對某一問題展開討論并歸納總結(jié).

  五、教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)情景感知平移

  活動一觀看:李老師的生活片段(視頻)

  片段一開窗戶

  片段二開抽屜

  片段三開車

  片段四乘坐電梯

  看完后,我將引導(dǎo)學(xué)生仔細分析從中抽象出的平面圖形的變換,提出問題:“在剛才的過程中,圖形是怎么移動的呢?”

  通過教師的引導(dǎo),學(xué)生不難得出:“圖形是沿著一條直線移動的”.

  【設(shè)計意圖】

  1.以老師的生活片段作為引入,可以在最短時間內(nèi)激發(fā)學(xué)生的興趣,引起學(xué)生的高度注意力,進入情景,感受生活中的平移.

  2.滲透將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的思想.

  二、動手操作探究平移

  活動二觀看下列美麗的圖案,并回答問題.

  (1)這些圖形有什么共同特點?

  (2)能否根據(jù)其中一部分繪制整個圖案?

  在老師用動畫演示的啟發(fā)下,經(jīng)過同學(xué)們的熱烈討論,大家將達成共識:

  “可以將其中的一部分沿一條直線移動,得出若干個形狀、大小完全相同的圖形,組合成圖案”.

  活動三指導(dǎo)學(xué)生用平移的方法繪制圖案

  請大家試試看!在一張白紙上劃一條直線,將手中的硬紙板圖形沿著這條直線移動,并把每一次移動后的圖形畫下來!

  我先在黑板上演示,然后學(xué)生動手作圖,完成后用實物投影儀展示部分同學(xué)的作品,并告訴學(xué)生:“我們剛才做的就是將圖形進行平移”.

  【設(shè)計意圖】

  讓學(xué)生感受到通過平移可以創(chuàng)造生活中的美,并進一步加深對平移的印象:

  “一個圖形的整體沿一條直線移動”.

  三、合作交流學(xué)平移

  1.平移的定義:將一個圖形沿某一直線方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移

  接著我將引導(dǎo)學(xué)生關(guān)注定義中包含平移的兩要素:方向和距離.

  對應(yīng)點的定義:

  新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應(yīng)點.

  在教師的引導(dǎo)下,通過觀察多媒體再一次演示平移,學(xué)生很容易得出平移的第一條性質(zhì):

 。1)平移不改變圖形的形狀和大小,只改變圖形的位置.

  接著,我要求學(xué)生觀察課本P28圖中A、B、C點與它們的對應(yīng)點的連線,并提問:“這些線段有怎樣的數(shù)量關(guān)系和位置關(guān)系呢?”

  在本節(jié)課之前,學(xué)生已經(jīng)掌握了對線段大小的比較和平行線的判定的方法.在這里他們可以使用刻度尺、量角器、圓規(guī)等工具,通過度量線段、畫截線和比較角的大小等方法,探究出平移的第二條性質(zhì):

 。2)連接對應(yīng)點的線段平行且相等.

  【設(shè)計意圖】

  在了解平移定義的基礎(chǔ)上,通過觀察猜想、動手操作、合作交流,讓學(xué)生自主探討出平移的性質(zhì),既培養(yǎng)了學(xué)生的探索精神和協(xié)作意識,又有利于學(xué)生對新知識的理解和掌握.

  四、師生互動應(yīng)用平移

  1、請大家舉出生活中平移的現(xiàn)象

  【設(shè)計意圖】

  讓學(xué)生在尋找身邊的.平移的過程中,進一步認識到“數(shù)學(xué)來源于生活”,激發(fā)他們學(xué)好數(shù)學(xué),將來更好地讓“數(shù)學(xué)服務(wù)于生活”.

  2、例題1.

  (1)平移改變的是圖形的()

  B

  A.位置B.大小C.形狀D.位置、大小和形狀

  (2)在平移變換中,連接對應(yīng)點的線段()

  A.平行不相等B.相等不平C.平行且相等D.既不平行,又不相等

  (3)經(jīng)過平移,圖形上每個點都沿同一個方向移動了一段距離,下面說法正確的是()

  A.不同的點移動的距離不同B.既可能相同也可能不同

  C.不同的點移動的距離相同D.無法確定

  【設(shè)計意圖】

  為了學(xué)生加深對平移性質(zhì)的理解,突破了重、難點.

  例題2.下列變換中可能屬于平移的有哪些?

  CAB

  【設(shè)計意圖】DE

  強調(diào)平移“是圖形沿一條直線運動”,讓學(xué)生意識到“不符合平移性質(zhì)的不是平移”,突出了重點,突破了難點.

  3、練習(xí):

  (1)下圖中,每個方格的邊長為一個單位長度,左邊的小船是右邊的小船向平移單位長度后得到的;

  (2)請找出A、B、C的對應(yīng)點A′、B′、C′;

  (3)請找出與線段AA′相等且平行的兩條線段,它們的長度是多少?

  【設(shè)計意圖】

  練習(xí)題的設(shè)計,是為了鞏固對平移兩要素與性質(zhì)的理解和掌握,實現(xiàn)重、難點的落實,

  并為下一步“平移作圖和用坐標表示平移”的學(xué)習(xí)作好鋪墊.

  五、小結(jié)拓展回味平移

  1.欣賞與回味(一)

  用同樣的基本圖形繪制的圖案,其效果為什么會有這么大的差異呢?”

  【設(shè)計意圖】

  通過對圖形欣賞和對比,讓學(xué)生體會到:用同樣一個基本圖形,如果平移的方向不同或平移的距離不一樣,將會產(chǎn)生出不同的視覺效果,從而加深對平移的兩要素的理解.

  欣賞與回味(二)

  【設(shè)計意圖】

  通過觀察多媒體繪制這幅圖片的過程,讓學(xué)生感受到用一個基本圖形通過不同的平移可以構(gòu)造出生活中的美,激發(fā)學(xué)生運用平移設(shè)計圖案的興趣.

  2.請大家談?wù)勥@節(jié)課的收獲!

  ——平移的定義—平移的兩要素

  ——平移的性質(zhì)

  初中數(shù)學(xué)優(yōu)秀教案 篇3

  教學(xué)目標

  (一)教學(xué)知識點

  1.利用方程解決實際問題.

  2.訓(xùn)練用配方法解題的技能.

  (二)能力訓(xùn)練要求

  1.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.

  2.能根據(jù)具體問題的實際意義檢驗結(jié)果的合理性.

  3.進一步訓(xùn)練利用配方法解題的技能.

  通過學(xué)生創(chuàng)設(shè)解決問題的方案,來培養(yǎng)其數(shù)學(xué)的應(yīng)用意識和能力,進而拓寬他們的思維空間,來激發(fā)其學(xué)習(xí)的主動積極性.

  教學(xué)重點

  利用方程解決實際問題

  教學(xué)難點

  對于開放性問題的解決,即如何設(shè)計方案

  教學(xué)方法

  分組討論法

  教具準備

  投影片二張

  第一張:練習(xí)(記作投影片2.2.3A)

  第二張:實際問題(記作投影片2.2.3B)

  教學(xué)過程

 、.巧設(shè)情景問題,引入新課

  [師]通過上兩節(jié)課的研究,我們會用配方法來解數(shù)字系數(shù)的一元二次方程.下面我們通過練習(xí)來復(fù)習(xí)鞏固一元二次方程的解法.(出示投影片2.2.3A)

  用配方法解下列一元二次方程:

  (1)x2+6x+8=0;

  (2)x2-8x+15=0;

  (3)x2-3x-7=0;

  (4)3x2-8x+4=0;

  (5)6x2-11x-10=0;

  (6)2x2+21x-11=0.

  [師]我們分組來做,第一、三、五組的同學(xué)做方程(1)、(3)、(5),第二、四、六組的同學(xué)做方程(2)、

  (4)、(6).

  [師]各組做完了沒有?

  [生齊聲]做完了.

  [師]好,我們來交叉改一下,看看哪位同學(xué)批改得仔細,哪位同學(xué)的方程解得全對.

  [生甲]我改的是××同學(xué)的,他做的是方程(1)、(3)、(5),方程(1)解對了,答案是x1=-2,x2=-4.解方程(3)時,在配方的時候,他配錯了,即

  x-3x=7,

  x2-3x+32=7+32應(yīng)為(-23

  2)2.

  [師]很好,這里一次項-3x的系數(shù)-3是奇數(shù),所以應(yīng)在方程兩邊各加上(-3)的一半的平方,那方程(3)的正確答案是多少呢?

  [生乙]方程(3)的解為x1=

  [師]好,繼續(xù).3?237,x2?3?237.

  [生丙]方程(5)的二次項系數(shù)不為1,所以首先應(yīng)把方程化為二次項系數(shù)是1的形式,然后再應(yīng)用配方進行求解.××同學(xué)解的對,其解為x1=52,x2=-32.

  [生丁]××同學(xué)做的是方程(2)、(4)、(6).他解的完全正確,即

  方程(2)的.解:x1=5,x2=3,

  方程(4)的解:x1=2,x2=

  方程(6)的解:xl=32,12,x2=-11.

  [師]利用配方法求解方程時,一定要注意:

 、俜匠痰亩雾椣禂(shù)不為1時,首先應(yīng)把它化為二次項系數(shù)是1的形式,這是利用配方法求解方程的前提.

  ②配方法中方程的兩邊都加上一次項系數(shù)一半的平方的前提是方程的二次項系數(shù)為1.

  另外,大家在利用配方法求解方程時,要有一定的技能.這就需要大家不僅要多練,而且還要動腦.尤其是在解決實際問題中.

  這節(jié)課我們就來解決一個實際問題.

  Ⅱ.講授新課

  [師]看大屏幕.(出示投影片2.2.3B)在一塊長16m,寬12m的矩形荒地上,要建造一個花園,并使花園所占面積為荒地面積的一半,你能給出設(shè)計方案嗎?

  [師]大家仔細看題,弄清題意后,分組進行討論,設(shè)計具體方案,并說說你的想法.

  [生甲]我們組

  的設(shè)計方案如右圖

  所示,其中花園四

  周是小路,它們的

  寬度都相等.

  這樣設(shè)計既美觀又大方,通過列方程、解方程,可以得到小路的寬度為2m或12m.

  [師]噢,同學(xué)們來想一想,甲組的設(shè)計符合要求嗎?如果符合,請說明是如何列方程,又如何求解方程的;如果不符合,請說明理由.

  [生乙]甲組的設(shè)計符合要求.

  我們可以假設(shè)小路的寬度為xm,則根據(jù)題意,可得方程(16-2x)(12-2x)=1

  2×16×12,

  也就是x2-14x-24=0.

  然后利用配方法來求解這個方程,即

  x-14x=-24,

  x2-14x+72=-24+72,

  (x-7)=25,

  x-7=±5,

  即x-7=5,x-7=-5.

  ∴x1=12.x2=2.

  因此,小路的寬度為2m或12m.

  由以上所述知:甲組的設(shè)計方案符合要求.

  [生丙]不對,因為荒地的寬度是12m,所以小路的寬度絕對不能為12m.因此甲組設(shè)計的方案不太準確,應(yīng)更正為:花園四周的小路的寬度只能是2m.

  [師]大家來作判斷,誰說的合乎實際?

  [生齊聲]丙同學(xué)說得有理.

  [師]好,一般地來說:在解一元一次方程時,只要題目、方程及解法正確,那么得出的根便是所列方程的根,一般也就是所解應(yīng)用題的解,而一元二次方程有兩個根,這些根雖然滿足所列的一元二次方程,但未必符合實際問題.因此,解完一元二次方程之后,不要急于下結(jié)論,而要按題意來檢驗這些根是不是實際問題的解.這一點,丙同學(xué)做得很好,大家要學(xué)習(xí)他從多方面考慮問題.接下來,我們來看其他組設(shè)計的方案.

  [生丁]我們組

  的設(shè)計方案如右圖.

  我們是以矩形

  的四個頂點為圓心,以約5.5m長為半徑畫了四個相同的扇形,則矩形除四個相同的扇形以外的地方就可作為花園的場地.

  因為四個相同的扇形拼湊在一起正好是一個圓,即四個相同扇形的面積之和恰為一個圓的面積,假設(shè)其半徑為xm,根據(jù)題意,可得

  πx2=22

  1

  2×12×16.

  解得x=±96

  ?≈±5.5.

  因為半徑為正數(shù),所以x=-5.5應(yīng)舍去.因此,由以上所述可知,我們組設(shè)計的方案符合要求.

  [生戊]由丁同

  學(xué)組的啟發(fā),我又

  設(shè)計了一個方案,

  如右圖.

  以矩形的對角

  線的交點為圓心,以5.5m長為半徑在矩形中間畫一個圓,這個圓也可作為花園的場地.

  [生己]老師,我也設(shè)計了一個方案,圖形與戊同學(xué)的一樣,他是把圓作為花園的場地,而我是把圓以外的荒地作為花園的場地,圓內(nèi)以備蓋房子.

  [師]同學(xué)們設(shè)計的方案都很好,并能觸類旁通,真棒.其他組怎么樣?

  [生庚]我們組

  設(shè)計的方案如右圖.

  順次連結(jié)矩形

  各邊的中點,所

  得到的四邊形即

  是作為花園的場

  地.

  因為矩形的四個頂點處的直角三角形都全等,每個直角三角形的面積是24m2(即1

  2×6×8),所以四

  個直角三角形的面積之和為96m2,則剩下的面積也正好是96m2,即等于矩形面積的一半.因此這個設(shè)計方案也符合要求.

  [生辛]我們組設(shè)計的方案如下圖.

  圖中的陰影部分可作為建花園的場所.

  因為陰影部分的面積為96m,正好是矩形面積的一半,所以這個設(shè)計也符合要求.

  [生丑]我們組

  設(shè)計的方案如右圖.

  圖中的陰影部

  分可作為建花園的

  場地.

  經(jīng)計算,它符合要求.

  [生癸]我們組的設(shè)計方案如下圖.

  2

  圖中的陰影部分是作為建花園的場地.

  [師]噢,同學(xué)們能幫癸組求出圖中的x嗎?

  [生]能,根據(jù)題意,可得方程

  2×1

  2(16-x)(12-x)

 。1

  2

  2×16×12,即x-28x+96=0,

  x2-28x=-96,

  x2-28x+142=-96+142,

  (x-14)2=100,

  x-14=±10.

  ∴x1=24,x2=4.

  因為矩形的長為16m,所以x1=24不符合題意.因此圖中的x只能為4m.

  [師]同學(xué)們真棒,通過大家的努力,設(shè)計了這么多在矩形荒地上建花園的方案.

  接下來,我們再來看一個設(shè)計方案.

  Ⅲ.課堂練習(xí)

  (一)課本P55隨堂練習(xí)1

  1.小穎的設(shè)計方案如圖所示,你能幫助她求出圖中的x嗎?

  解:根據(jù)題意,得(16-x)(12-x)=

  212×16×12,即x-28x+96=0.

  解這個方程,得

  x1=4,x2=24(舍去).

  所以x=4.

  (二)看課本P53~P54,然后小結(jié).

  Ⅳ.課時小結(jié)

  本節(jié)課我們通過列方程解決實際問題,進一步了解了一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型,并且知道在解決實際問題時,要根據(jù)具體問題的實際意義檢驗結(jié)果的合理性.另外,還應(yīng)注意用配方法解題的技能.

 、.課后作業(yè)

  (一)課本P55習(xí)題2.51、2

  (二)1.預(yù)習(xí)內(nèi)容:P56~P57

  2.預(yù)習(xí)提綱

  如何推導(dǎo)一元二次方程的求根公式.

  初中數(shù)學(xué)優(yōu)秀教案 篇4

  教學(xué)目標:

  1、通過解題,使學(xué)生了解到數(shù)學(xué)是具有趣味性的。

  2、培養(yǎng)學(xué)生勤于動腦的習(xí)慣。

  教學(xué)過程:

  一、出示趣味題

  師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。

  1、小衛(wèi)到文具店買文具,他買毛筆用去了所帶錢的.一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛(wèi)原有()錢?

  2、蘋蘋做加法,把一個加數(shù)22錯寫成12,算出結(jié)果是48,問正確結(jié)果是()。

  3、小明做減法,把減數(shù)30寫成20,這樣他算出的得數(shù)比正確得數(shù)多(),如果小明算出的結(jié)果是10,正確結(jié)果是()。

  4、同學(xué)們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種

  辦法來用△表示。

  5、把一段布5米,一次剪下1米,全部剪下要()次。

  6、李小松有10本本子,送給小剛2本后,兩人本子數(shù)同樣多,小剛原來

  有()本本子。

  二、小組討論

  三、指名講解

  四、評價

  1、同學(xué)互評

  2、老師點評

  五、小結(jié)

  師:通過今天的學(xué)習(xí),你有哪些收獲呢?

  初中數(shù)學(xué)優(yōu)秀教案 篇5

  教學(xué)目標:

  利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。

  利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡單的實際問題。

  在探索中體驗數(shù)學(xué)來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。

  教學(xué)重點和難點:

  運用數(shù)形結(jié)合的思想方法進行解二次函數(shù),這是重點也是難點。

  教學(xué)過程:

 。ㄒ唬┮耄

  分組復(fù)習(xí)舊知。

  探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?

  可引導(dǎo)學(xué)生從幾個方面進行討論:

 。1)如何畫圖

  (2)頂點、圖象與坐標軸的交點

 。3)所形成的三角形以及四邊形的面積

  (4)對稱軸

  從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。

 。ǘ┬率冢

  1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE=SABC。

  再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。

  再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。

  2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。

  例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。

 。ㄈ┨岣呔毩(xí)

  根據(jù)我們學(xué)校人人皆知的船模特色項目設(shè)計了這樣一個情境:

  讓班級中的上科院小院士來簡要介紹學(xué)校船模組的'情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。

  讓學(xué)生在練習(xí)中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。

 。ㄋ模┳寣W(xué)生討論小結(jié)(略)

  (五)作業(yè)布置

  1、在直角坐標平面內(nèi),點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

  (1)求二次函數(shù)的解析式;

 。2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設(shè)平移后的圖象與y軸的交點為C,頂點為P,求POC的面積。

  2、如圖,一個二次函數(shù)的圖象與直線y=x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。

  3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。

  (1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;

  (2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(備用數(shù)據(jù):,計算結(jié)果精確到1米)

  初中數(shù)學(xué)優(yōu)秀教案 篇6

  一、目的要求

  1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學(xué)生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內(nèi)容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結(jié)合這些內(nèi)容,學(xué)生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學(xué)思想方法在解決實際問題中的應(yīng)用。

  2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。

  三、教學(xué)過程

  復(fù)習(xí)提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:

  (1)這些式子表示的'是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)

  (4)x的'一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設(shè)問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0(當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)

  由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  寫成式子是(一定)

  需指出,小學(xué)因為沒有學(xué)過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。

  其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習(xí):

  教科書13、4節(jié)練習(xí)第1題.

  初中數(shù)學(xué)優(yōu)秀教案 篇7

  教學(xué)目標:

  1、知識與技能:

  (1)通過學(xué)生熟悉的問題情景,以過探索有理數(shù)減法法則得出的過程,理解有理數(shù)減法法則的合理性。

  (2)能熟練進行有理數(shù)的減法法則。

  2、過程與方法

  通過實例,歸納出有理數(shù)的減法法則,培養(yǎng)學(xué)生的邏輯思維能力和運算能力,通過減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會人歸的數(shù)學(xué)思想。

  重點、難點

  1、重點:有理數(shù)減法法則及其應(yīng)用。

  2、難點:有理數(shù)減法法則的應(yīng)用符號的改變。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景,導(dǎo)入新課

  1、有理數(shù)加法運算是怎樣做的?(-5)+3=—3+(—5)=

  —3+(+5)=

  2、-(-2)=-[-(+23)]=,+[-(-2)]=

  3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的.溫差是多少?

  導(dǎo)語:可見,有理數(shù)的減法運算在現(xiàn)實生活中也有著很廣泛的應(yīng)用。(出示課題)

  二、合作交流,解讀探究

  1(-2)-(-10)=8=(-2)+8

  2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?

  3、通過以上列式,你能發(fā)現(xiàn)減法運算與加法運算的關(guān)系嗎?

  (學(xué)生分組討論,大膽發(fā)言,總結(jié)有理數(shù)的減法法則)

  減去一個數(shù)等于加上這個數(shù)的相反數(shù)

  教師提問、啟發(fā):(1)法則中的“減去一個數(shù)”,這個數(shù)指的是哪個數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個數(shù)的相反數(shù)”“加上”兩字怎樣理解?“這個數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?

  三、應(yīng)用遷移,鞏固提高

  1、P.24例1計算:

  (1)0-(-3.18)(2)(-10)-(-6)(3)-

  解:(1)0-(-3.18)=0+3.18=3.18

  (2)(-10)-(-6)=(-10)+6=-4

  (3)-=+=1

  2、課內(nèi)練習(xí):P.241、2、3

  3、游戲:兩人一組,用撲克牌做有理數(shù)減法運算游戲(每人27張牌,黑牌點數(shù)為正數(shù),紅牌點數(shù)為負數(shù),王牌點數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點數(shù)之差者獲勝,直至其中一人手中無牌為止)。

  四、總結(jié)反思

  (1)有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  (2)有理數(shù)減法的步驟:先變?yōu)榧臃,再改變減數(shù)的符號,最后按有理數(shù)加法法則計算。

  五、作業(yè)

  P.27習(xí)題1.4A組1、2、5、6

  備選題

  填空:比2小-9的數(shù)是。

  а比а+2小。

  若а小于0,е是非負數(shù),則2а-3е0。

  初中數(shù)學(xué)優(yōu)秀教案 篇8

  一、教學(xué)目的

  【知識與技能】

  了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

  【過程與方法】

  通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。

  【情感、態(tài)度與價值觀】

  在數(shù)與形結(jié)合的過程中,體會數(shù)學(xué)學(xué)習(xí)的樂趣。

  二、教學(xué)重難點

  【教學(xué)重點】

  數(shù)軸的三要素,用數(shù)軸上的`點表示有理數(shù)。

  【教學(xué)難點】

  數(shù)形結(jié)合的思想方法。

  三、教學(xué)過程

  (一)引入新課

  提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。

  (二)探索新知

  學(xué)生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系:

  提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

  學(xué)生活動:畫圖表示后提問。

  提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

  教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

  提問3:你是如何理解數(shù)軸三要素的?

  師生共同總結(jié):“原點”是數(shù)軸的“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

  (三)課堂練習(xí)

  如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

  (四)小結(jié)作業(yè)

  提問:今天有什么收獲?

  引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

  課后作業(yè):

  課后練習(xí)題第二題;思考:到原點距離相等的兩個點有什么特點?

  初中數(shù)學(xué)優(yōu)秀教案 篇9

  一、內(nèi)容特點

  在知識與方法上類似于數(shù)系的第一次擴張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。

  內(nèi)容定位:了解無理數(shù)、實數(shù)概念,了解(算術(shù))平方根的概念;會用根號表示數(shù)的(算術(shù))平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。

  二、設(shè)計思路

  整體設(shè)計思路:

  無理數(shù)的引入——無理數(shù)的表示——實數(shù)及其相關(guān)概念(包括實數(shù)運算),實數(shù)的應(yīng)用貫穿于內(nèi)容的始終。

  學(xué)習(xí)對象——實數(shù)概念及其運算;學(xué)習(xí)過程——通過拼圖活動引進無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的方式,尋求實數(shù)的運算法則;學(xué)習(xí)方式——操作、猜測、抽象、驗證、類比、推理等。

  具體過程:

  首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結(jié)實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關(guān)概念、運算律和運算性質(zhì)等。

  第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學(xué)生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。

  第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運算。

  第四節(jié):公園有多寬:在實際生活和生產(chǎn)實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗計算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。

  第五節(jié):用計算器開方:會用計算器求平方根和立方根。經(jīng)歷運用計算器探求數(shù)學(xué)規(guī)律的活動,發(fā)展合情推理的`能力。

  第六節(jié):實數(shù)。總結(jié)實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關(guān)概念、運算律和運算性質(zhì)等。

  三、一些建議

  1.注重概念的形成過程,讓學(xué)生在概念的形成的過程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對無理數(shù)和實數(shù)概念的意義理解。

  2.鼓勵學(xué)生進行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。

  3.注意運用類比的方法,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系。

  4.淡化二次根式的概念。

  初中數(shù)學(xué)優(yōu)秀教案 篇10

  學(xué)習(xí)目標

  1.理解平行線的意義兩條直線的兩種位置關(guān)系;

  2.理解并掌握平行公理及其推論的內(nèi)容;

  3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;

  學(xué)習(xí)重點

  探索和掌握平行公理及其推論.

  學(xué)習(xí)難點

  對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)

  一、學(xué)習(xí)過程:預(yù)習(xí)提問

  兩條直線相交有幾個交點?

  平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、工具:直尺、三角板

  2、方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據(jù)此方法練習(xí)畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

 。ǘ┢叫泄砑巴普

  1、思考:上圖中,①過點B畫直線a的平行線,能畫條;

 、谶^點C畫直線a的平行線,能畫條;

 、勰惝嫷闹本有什么位置關(guān)系?。

 、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

 。ㄒ唬┻x擇題:

  1、下列推理正確的是()

  A、因為a//d,b//c,所以c//dB、因為a//c,b//d,所以c//d

  C、因為a//b,a//c,所以b//cD、因為a//b,d//c,所以a//c

  2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為()

  A.0個B.1個C.2個D.3個

 。ǘ┨羁疹}:

  1、在同一平面內(nèi),與已知直線L平行的直線有條,而經(jīng)過L外一點,與已知直線L平行的.直線有且只有條。

  2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:

 。1)L1與L2沒有公共點,則L1與L2;

 。2)L1與L2有且只有一個公共點,則L1與L2;

 。3)L1與L2有兩個公共點,則L1與L2。

  3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關(guān)系是。

  4、平面內(nèi)有a、b、c三條直線,則它們的交點個數(shù)可能是個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°。

  初中數(shù)學(xué)優(yōu)秀教案 篇11

  教學(xué)目標

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;

  2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學(xué)學(xué)習(xí)的.樂趣,感受一元一次不等式組在解決實際問題中的價值。

  教學(xué)難點

  正確分析實際問題中的不等關(guān)系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學(xué)模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:

  (1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結(jié)

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

  在討論或議論的基礎(chǔ)上老師揭示:

  步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

  初中數(shù)學(xué)優(yōu)秀教案 篇12

  一、教學(xué)目標

  1、知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

  3、情感與態(tài)度目標

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  二、教學(xué)重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的'探索過程,符號法則及對法則的理解。

  三、教學(xué)過程

  1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?學(xué)生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、小組探索、歸納法則

 。1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

 、2×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向運動米

  2×3=

 、-2×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向運動米

  -2×3=

 、2×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向運動米

  2×(-3)=

 、埽-2)×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向運動米

 。-2)×(-3)=

 。2)學(xué)生歸納法則

  ①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)=()同號得

 。-)×(+)=()異號得

  (+)×(-)=()異號得

 。-)×(-)=()同號得

 、诜e的絕對值等于。

  ③任何數(shù)與零相乘,積仍為。

  (3)師生共同用文字敘述有理數(shù)乘法法則。

  3、運用法則計算,鞏固法則。

 。1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。

 。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為。

  (3)學(xué)生做練習(xí),教師評析。

 。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。

  初中數(shù)學(xué)優(yōu)秀教案 篇13

  教學(xué)目標:

  1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。

  2、過程與方法:通過觀察,歸納一元一次方程的概念。

  3、情感與態(tài)度:體驗數(shù)學(xué)與日常生活密切相關(guān),認識到許多實際問題可以用數(shù)學(xué)方法解決。

  教學(xué)重點:

  歸納一元次方程的概念

  教學(xué)難點:

  感受方程作為刻畫現(xiàn)實世界有效模型的意義.

  教學(xué)過程:

  一、情景導(dǎo)入:

  我能猜出你們的'年齡,相信嗎?

  只要任何一個同學(xué)回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.

  問:你的年齡乘以2加3等于多少?

  學(xué)生說出結(jié)果,教師猜測年齡,并問:你們知道我是怎么做的嗎?

  學(xué)生討論并回答

  二、知識探究:

  1、方程的教學(xué)(投影演示)

  小彬和小明也在進行猜年齡游戲,我們來看一看。

  找出這道題中的等量關(guān)系,列出方程.

  大家觀察,這兩個式子有什么特點。

  討論并回答:什么是方程?方程有哪些特點?

  2、判斷下列式子是不是方程?

 。1)X+2=3(是)(2)X+3Y=6(是)

 。3)3M-6(不是)(4)1+2=3(不是)

 。5)X+3>5(不是)(6)Y-12=5(是)

  三、合作交流

  1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)

  情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?

  你能找出題中的等量關(guān)系嗎?怎樣列方程?由此題你們想到了些什么?

  情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)

  截至20xx年11月1日0時,全國每10萬人中具有大學(xué)文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%

  1990年6月底每10萬人中約有多少人具有大學(xué)文化程度?情景三:西湖中學(xué)的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?

  下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?

  2X–5=21

  40+15X=100

  X(1+153.94﹪)=3611

  2[X+(X+12)]=200

  2[Y+(Y–12)]=200

  在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。

  問:大家剛才都已經(jīng)自己列出了方程,那個同學(xué)能夠說一下你是怎樣列出方程的,列方程應(yīng)該分為那幾步呢?

  生:分組討論,回答列方程的步驟(1)找等量關(guān)系(2)設(shè)未知數(shù)(3)列方程

  四、隨堂練習(xí)

  1、投影趣味習(xí)題,

  2、做一做

  下面有兩道題,請選做一題。

 。1)、請根據(jù)方程2X+3=21自己設(shè)計一道有實際背景的應(yīng)用題。

 。2)、發(fā)揮你的想象,用自己的年齡編一道應(yīng)用題,并列出方程。

  五、課堂小節(jié)

  1、這節(jié)課你學(xué)到了什么?

  2、這節(jié)課給你印象最深的是什么?

  六、作業(yè):

  分組布置

  初中數(shù)學(xué)優(yōu)秀教案 篇14

  教學(xué)目標

  1.知識與技能

  能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.

  2.過程與方法

  經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.

  3.情感態(tài)度與價值觀

  培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴謹治學(xué)的學(xué)習(xí)態(tài)度.

  重、難點與關(guān)鍵

  1.重點:去括號法則,準確應(yīng)用法則將整式化簡.

  2.難點:括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤.

  3.關(guān)鍵:準確理解去括號法則.

  教具準備

  投影儀.

  教學(xué)過程

  一、新授

  利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?

  現(xiàn)在我們來看本章引言中的.問題(3):

  在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為

  100t+120(t-0.5)千米①

  凍土地段與非凍土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都帶有括號,它們應(yīng)如何化簡?

  思路點撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:

  利用分配律,可以去括號,合并同類項,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我們知道,化簡帶有括號的整式,首先應(yīng)先去括號.

  上面兩式去括號部分變形分別為:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比較③、④兩式,你能發(fā)現(xiàn)去括號時符號變化的規(guī)律嗎?

  思路點撥:鼓勵學(xué)生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:

  如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;

  如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.

  特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).

  利用分配律,可以將式子中的括號去掉,得:

  +(x-3)=x-3(括號沒了,括號內(nèi)的每一項都沒有變號)

  -(x-3)=-x+3(括號沒了,括號內(nèi)的每一項都改變了符號)

  去括號規(guī)律要準確理解,去括號應(yīng)對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內(nèi)原有幾項去掉括號后仍有幾項.

  二、范例學(xué)習(xí)

  例1.化簡下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路點撥:講解時,先讓學(xué)生判定是哪種類型的去括號,去括號后,要不要變號,括號內(nèi)的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內(nèi),然后再去括號.

  解答過程按課本,可由學(xué)生口述,教師板書.

  例2.兩船從同一港口同時出發(fā)反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.

  (1)2小時后兩船相距多遠?

  (2)2小時后甲船比乙船多航行多少千米?

  教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.

  思路點撥:根據(jù)船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.

  解答過程按課本.

  去括號時強調(diào):括號內(nèi)每一項都要乘以2,括號前是負因數(shù)時,去掉括號后,括號內(nèi)每一項都要變號.為了防止出錯,可以先用分配律將數(shù)字2與括號內(nèi)的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.

  三、鞏固練習(xí)

  1.課本第68頁練習(xí)1、2題.

  2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路點撥:一般地,先去小括號,再去中括號.

  四、課堂小結(jié)

  去括號是代數(shù)式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規(guī)律可以簡單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號前帶有數(shù)字因數(shù)時,這個數(shù)字要乘以括號內(nèi)的每一項,切勿漏乘某些項.

  五、作業(yè)布置

  1.課本第71頁習(xí)題2.2第2、3、5、8題.

  2.選用課時作業(yè)設(shè)計.

【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:

初中數(shù)學(xué)優(yōu)秀教案10-26

初中數(shù)學(xué)優(yōu)秀教案09-29

初中數(shù)學(xué)優(yōu)秀教案[精選]06-18

初中數(shù)學(xué)優(yōu)秀教案通用04-06

【精】初中數(shù)學(xué)優(yōu)秀教案02-24

初中數(shù)學(xué)優(yōu)秀教案【精】12-30

初中數(shù)學(xué)教案【優(yōu)秀】05-22

初中數(shù)學(xué)優(yōu)秀教案[精華]06-12

(精華)初中數(shù)學(xué)優(yōu)秀教案06-09

初中數(shù)學(xué)優(yōu)秀教案(精品)06-10