亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數(shù)學三角形教案

時間:2023-01-25 03:13:08 初中數(shù)學教案 我要投稿

初中數(shù)學三角形教案

  作為一名無私奉獻的老師,就有可能用到教案,借助教案可以讓教學工作更科學化。那要怎么寫好教案呢?以下是小編幫大家整理的初中數(shù)學三角形教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數(shù)學三角形教案

初中數(shù)學三角形教案1

  教材與學情:

  解直角三角形的應用是在學生熟練掌握了直角三角形的解法的基礎上進行教學,它是把一些實際問題轉(zhuǎn)化為解直角三角形的數(shù)學問題,對分析問題能力要求較高,這會使學生學習感到困難,在教學中應引起足夠的重視。

  信息論原理:

  將直角三角形中邊角關(guān)系作為已有信息,通過復習(輸入),使學生更牢固地掌握(貯存);再通過例題講解,達到信息處理;通過總結(jié)歸納,使信息優(yōu)化;通過變式練習,使信息強化并能靈活運用;通過布置作業(yè),使信息得到反饋。

  教學目標

 、闭J知目標:

 、哦贸R娒~(如仰角、俯角)的意義

 、颇苷_理解題意,將實際問題轉(zhuǎn)化為數(shù)學

 、悄芾靡延兄R,通過直接解三角形或列方程的方法解決一些實際問題。

 、材芰δ繕耍号囵B(yǎng)學生分析問題和解決問題的能力,培養(yǎng)學生思維能力的`靈活性。

  ⒊情感目標:使學生能理論聯(lián)系實際,培養(yǎng)學生的對立統(tǒng)一的觀點。

  教學重點、難點:

  重點:利用解直角三角形來解決一些實際問題

  難點:正確理解題意,將實際問題轉(zhuǎn)化為數(shù)學問題。

  信息優(yōu)化策略:

 、旁趯W生對實際問題的探究中,神經(jīng)興奮,思維活動始終處于積極狀態(tài)

 、圃跉w納、變換中激發(fā)學生思維的靈活性、敏捷性和創(chuàng)造性。

 、侵匾晫W法指導,以加速教學效績信息的順利體現(xiàn)。

  教學媒體:

  投影儀、教具(一個銳角三角形,可變換圖2-圖7)

  高潮設計:

  1、例1、例2圖形基本相同,但解法不同;這是為什么?學生的思維處于積極探求狀態(tài)中,從而激發(fā)學生學習的積極性和主動性

  2、將一個銳角三角形紙片通過旋轉(zhuǎn)、翻折等變換,使學生對問題本質(zhì)有了更深的認識

  教學過程

  一、復習引入,輸入并貯存信息

  1.提問:如圖,在Rt△ABC中,∠C=90°。

 、湃卆、b、c有什么關(guān)系?

  ⑵兩銳角∠A、∠B有怎樣的關(guān)系?

 、沁吪c角之間有怎樣的關(guān)系?

  2.提問:解直角三角形應具備怎樣的條件:

  注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學生貯存信息

  二、實例講解,處理信息:

  例1.(投影)在水平線上一點C,測得同頂?shù)难鼋菫?0°,向山沿直線 前進20為到D處,再測山頂A的仰角為60°,求山高AB。

  ⑴引導學生將實際問題轉(zhuǎn)化為數(shù)學問題。

 、品治觯呵驛B可以解Rt△ABD和

  Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。

 、墙忸}過程,學生練習。

 、人伎迹杭偃纭螦DB=45°,能否直接來解一個三角形呢?請看例2。

  例2.(投影)在水平線上一點C,測得山頂A的仰角為30°,向山沿直線前進20米到D處,再測山頂A的仰角為45°,求山高AB。

  分析:

 、旁赗t△ABC和Rt△ABD中,都沒有兩個已知元素,故不能直接解一個三角形來求出AB。

  ⑵考慮到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個直角三角形的直角邊,但CD=BC=BD,啟以學生設AB=X,通過 列方程來解,然后板書解題過程。

  解:設山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、歸納總結(jié),優(yōu)化信息

  例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。

  四、變式訓練,強化信息

  (投影)練習1:如圖,山上有鐵塔CD為m米,從地上一點測得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。

  練習2:如圖,海岸上有A、B兩點相距120米,由A、B兩點觀測海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。

  練習3:在塔PQ的正西方向A點測得頂端P的

  仰角為30°,在塔的正南方向B點處,測得頂端P的仰角為45°且AB=60米,求塔高PQ。

  教師待學生解題完畢后,進行講評,并利用教具揭示各題實質(zhì):

 、艑⒒緢D形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉(zhuǎn)90°,即可得圖7的立體圖形。

  ⑵引導學生歸納三個練習題的等量關(guān)系:

  練習1的等量關(guān)系是AB=AB;練習2的等量關(guān)系是AD+BD=AB;練習3的等量關(guān)系是AQ2+BQ2=AB2

  五、作業(yè)布置,反饋信息

  《幾何》第三冊P57第10題,P58第4題。

  板書設計:

  解直角三角形的應用

  例1已知:………例2已知:………小結(jié):………

  求:………求:………

  解:………解:………

  練習1已知:………練習2已知:………練習3已知:………

  求:………求:………求:………

  解:………解:………解:………

初中數(shù)學三角形教案2

  一、學生起點分析

  學生已經(jīng)了勾股定理,并在先前其他內(nèi)容學習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?

  反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經(jīng)具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。

  二、學習任務分析

  本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:

  ● 知識與技能目標

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標

  1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;

  2.經(jīng)歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。

  ● 情感與態(tài)度目標

  1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;

  2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

  教學重點

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學法

  1.教學方法:實驗猜想歸納論證

  本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結(jié)論已有一定的體驗

  但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:

  (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;

  (2)從學生活動出發(fā),通過以舊引新,順勢教學過程;

  (3)利用探索,研究手段,通過思維深入,領悟教學過程。

  2.課前準備

  教具:教材、電腦、多媒體課件。

  學具:教材、筆記本、課堂練習本、文具。

  四、教學過程設計

  本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

  2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

  意圖:

  通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

  意圖:

  通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過學生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

  從上面的分組實驗很容易得出如下結(jié)論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  內(nèi)容2:說理

  提問:有同學認為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

  意圖:讓學生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進一步通過說理等方式使學生確信結(jié)論的可靠性,同時明晰結(jié)論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  滿足 的三個正整數(shù),稱為勾股數(shù)。

  注意事項:為了讓學生確認該結(jié)論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

  活動3:反思總結(jié)

  提問:

  1.同學們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學習勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

  4.通過今天同學們合作探究,你能體驗出一個數(shù)學結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

  意圖:進一步讓學生認識該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

  得到的.三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習,加強對勾股定理及勾股定理逆定理認識及應用

  效果

  每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環(huán)節(jié):登高望遠

  內(nèi)容:

  1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫出相應的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

  效果:

  學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網(wǎng)格進行計算,從而解決問題。

  效果:

  學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

  2.從今天所學內(nèi)容及所作練習中總結(jié)出的經(jīng)驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。

  意圖:

  鼓勵學生結(jié)合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。

  效果:

  學生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

  第七環(huán)節(jié):布置作業(yè)

  課本習題1.4第1,2,4題。

  五、教學反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。

  2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

  4.注重對學習新知理解應用偏困難的學生的進一步關(guān)注。

  5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調(diào)整,不做要求。

  由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調(diào)整。

  附:板書設計

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠

初中數(shù)學三角形教案3

  學習目標:

  1.經(jīng)歷探索直角三角形中邊角關(guān)系的過程.理解正切的意義和與現(xiàn)實生活的聯(lián)系.

  2.能夠用tanA表示直角三角形中兩邊的比,表示生活中物體的傾斜程度、坡度等,外能夠用正切進行簡單的計算.

  學習重點:

  1.從現(xiàn)實情境中探索直角三角形的邊角關(guān)系.

  2.理解正切、傾斜程度、坡度的數(shù)學意義,密切數(shù)學與生活的聯(lián)系.

  學習難點:

  理解正切的意義,并用它來表示兩邊的比.

  學習方法:

  引導—探索法. 更多免費教案下載綠色圃中

  學習過程:

  一、生活中的數(shù)學問題:

  1、你能比較兩個梯子哪個更陡嗎?你有哪些辦法?

  2、生活問題數(shù)學化:

 、湃鐖D:梯子AB和EF哪個更陡?你是怎樣判斷的?

  ⑵以下三組中,梯子AB和EF哪個更陡?你是怎樣判斷的?

  二、直角三角形的邊與角的關(guān)系(如圖,回答下列問題)

 、臨t△AB1C1和Rt△AB2C2有什么關(guān)系?

 、 有什么關(guān)系?

 、侨绻淖傿2在梯子上的位置(如B3C3)呢?

  ⑷由此你得出什么結(jié)論?

  三、例題:

  例1、如圖是甲,乙兩個自動扶梯,哪一個自動扶梯比較陡?

  例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.

  四、隨堂練習:

  1、如圖,△ABC是等腰直角三角形,你能根據(jù)圖中所給數(shù)據(jù)求出tanC嗎?

  2、如圖,某人從山腳下的點A走了200m后到達山頂?shù)狞cB,已知點B到山腳的垂直距離為55m,求山的坡度.(結(jié)果精確到0.001)

  3、若某人沿坡度i=3:4的斜坡前進10米,則他所在的位置比原來的位置升高________米.

  4、菱形的兩條對角線分別是16和12.較長的一條對角線與菱形的一邊的夾角為θ,則tanθ=______.

  5、如圖,Rt△ABC是一防洪堤背水坡的橫截面圖,斜坡AB的長為12 m,它的坡角為45°,為了提高該堤的防洪能力,現(xiàn)將背水坡改造成坡比為1:1.5的斜坡AD,求DB的長.(結(jié)果保留根號)

  五、課后練習:

  1、在Rt△ABC中,∠C=90°,AB=3,BC=1,則tanA= _______.

  2、在△ABC中,AB=10,AC=8,BC=6,則tanA=_______.

  3、在△ABC中,AB=AC=3,BC=4,則tanC=______.

  4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的對邊分別是a、b、c,且a=24,c= 25,求tanA、tanB的`值.

  5、若三角形三邊的比是25:24:7,求最小角的正切值.

  6、如圖,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的邊長和四邊形AECD的周長.

  7、已知:如圖,斜坡AB的傾斜角a,且tanα= ,現(xiàn)有一小球從坡底A處以20cm/s 的速度向坡頂B處移動,則小球以多大的速度向上升高?

  8、探究:

 、拧克糖水中有b克糖(a>b>0),則糖的質(zhì)量與糖水質(zhì)量的比為_______; 若再添加c克糖(c>0),則糖的質(zhì)量與糖水的質(zhì)量的比為________.生活常識告訴我們: 添加的糖完全溶解后,糖水會更甜,請根據(jù)所列式子及這個生活常識提煉出一個不等式: ____________.

 、啤⑽覀冎郎狡碌钠陆窃酱,則坡越陡,聯(lián)想到課本中的結(jié)論:tanA的值越大, 則坡越陡,我們會得到一個銳角逐漸變大時,它的正切值隨著這個角的變化而變化的規(guī)律,請你寫出這個規(guī)律:_____________.

 、、如圖,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延長BA、BC,使AE=CD=c, 直線CA、DE交于點F,請運用(2) 中得到的規(guī)律并根據(jù)以上提供的幾何模型證明你提煉出的不等式.

  §1.1從梯子的傾斜程度談起(第二課時)

  學習目標:

  1.經(jīng)歷探索直角三角形中邊角關(guān)系的過程,理解正弦和余弦的意義.

  2.能夠運用sinA、cosA表示直角三角形兩邊的比. 3.能根據(jù)直角三角形中的邊角關(guān)系,進行簡單的計算.

  4.理解銳角三角函數(shù)的意義.

  學習重點:

  1.理解銳角三角函數(shù)正弦、余弦的意義,并能舉例說明.

  2.能用sinA、cosA表示直角三角形兩邊的比.

  3.能根據(jù)直角三角形的邊角關(guān)系,進行簡單的計算.

  學習難點:

  用函數(shù)的觀點理解正弦、余弦和正切.

  學習方法:

  探索——交流法.

  學習過程:

  一、正弦、余弦及三角函數(shù)的定義

  想一想:如圖

  (1)直角三角形AB1C1和直角三角形AB2C2有什么關(guān)系?

  (2)有什么關(guān)系?呢?

  (3)如果改變A2在梯子A1B上的位置呢?你由此可得出什么結(jié)論?

  (4)如果改變梯子A1B的傾斜角的大小呢?你由此又可得出什么結(jié)論?

  請討論后回答.

  二、由圖討論梯子的傾斜程度與sinA和cosA的關(guān)系:

  三、例題:

  例1、如圖,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的長.

  例2、做一做:

  如圖,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你還能得出類似例1的結(jié)論嗎?請用一般式表達.

  四、隨堂練習:

  1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.

  2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周長和面積.

  3、在△ABC中.∠C=90°,若tanA=

初中數(shù)學三角形教案4

  一、教學目標

  1.使學生進一步理解相似比的概念,掌握相似三角形的性質(zhì)定理1.

  2.學生掌握綜合運用相似三角形的判定定理和性質(zhì)定理1來解決問題.

  3.進一步培養(yǎng)學生類比的教學思想.

  4.通過相似性質(zhì)的學習,感受圖形和語言的和諧美

  二、教法引導

  先學后教,達標導學

  三、重點及難點

  1.教學重點:是性質(zhì)定理1的應用.

  2.教學難點:是相似三角形的判定1與性質(zhì)等有關(guān)知識的綜合運用.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、膠片、常用畫圖工具.

  六、教學步驟

 。蹚土曁釂枺

  1.三角形中三種主要線段是什么?

  2.到目前為止,我們學習了相似三角形的.哪些性質(zhì)?

  3.什么叫相似比?

  [講解新課]

  根據(jù)相似三角形的定義,我們已經(jīng)學習了相似三角形的對應角相等,對應邊成比例.

  下面我們研究相似三角形的其他性質(zhì)(見圖).

  建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質(zhì)定理1.

  性質(zhì)定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比

初中數(shù)學三角形教案5

  教學目的

  1.理解三角形、三角形的邊、頂點、內(nèi)角、外角等概念.

  2.會將三角形按角分類.3.理解等腰三角形、等邊三角形的概念.

  重點、難點

  1.重點:三角形內(nèi)角、外角、等腰三角形、等邊三角形等概念.2.難點:三角形的外角.

  教學過程

  一、引入新課

  在我們生活中幾乎隨時可以看見三角形,它簡單、有趣,也十分有用,三角形可以幫助我們更好地認識周圍世界,可以幫助我們解決很多實際問題.

  本章我們將學習三角形的基本性質(zhì).

  二、新授

  1.三角形的概念:

  (1)什么是三角形呢?

  三角形是由三條不在同一條直線上的線段首尾順次連結(jié)組成的平面圖形,這三條線段就是三角形的邊.如圖:AB、BC、AC是這個三角形的三邊,兩邊的公共點叫三角形的頂點.(如點A)三角形約頂點用大寫字母表示,整個三角形表示為△ABC.

  A(頂點)

  邊

  B C

  (2)三角形的內(nèi)角,外角的概念:每兩條邊所組成的角叫做三角形的內(nèi)角,如∠BAC.

  每個三角形有幾個內(nèi)角?

  三角形中內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做三角形的外角,如下圖中∠ACD是∠ABC的一個外角,它與內(nèi)角∠ACB相鄰.

  A

  外角

  B C D

  與△ABC的內(nèi)角∠ACB相鄰的.外角有幾個?它們之間有什么關(guān)系?

  練習:(1)下圖中有幾個三角形?并把它們表示出來.

  A

  D

  B C

  (2)指出△ADC的三個內(nèi)角、三條邊.

  學生回答后教師接著問:∠ADC能寫成∠D嗎?∠ACD能寫成∠C嗎?為什么?

  (3)有人說CD是△ACD和△BCD的公共的邊,對嗎?AD是△ACD和△ABC的公共邊,對嗎?

  (4)∠BDC是△BCD的什么角?是△ACD的什么角?∠BCD是△ACD的外角,對嗎?

  (5)請你畫出與△BCD的內(nèi)角∠B相鄰的外角.

  2.三角形按角分類.

  讓學生觀察以下三個三角形的內(nèi)角,它們各有什么特點?并用量角器或三角板加以驗證.

  1 2 3

  第一個三角形三個內(nèi)角都是銳角;第二個三角形有一個內(nèi)角是直角;第三個三角形有一個內(nèi)角是鈍角.

  所有內(nèi)角都是銳角的三角形叫銳角三角形;有一個內(nèi)角是直角的三角形叫直角三角形;有一個內(nèi)角是鈍角的三角形叫鈍角三角形.

  三角形按角分類可分為:

  銳角三角形(三個內(nèi)角都是銳角)

  直角三角形(有一個內(nèi)角是直角)

  鈍角三角形(有一個內(nèi)角是鈍角)

  3.等腰三角形、等邊三角形的概念:讓學生觀察以下三個三角形,它們的邊各有什么特點?

  1 2 3

  經(jīng)過觀察,測量可知:第一個三角形的三邊互不相等;第二個三角形有兩條邊相等(AB=AC);第三個三角形的三邊都相等.

  (1)等腰三角形:兩條邊相等的三角形叫等腰三角形.

  相等的兩邊叫做等腰三角形的腰,如上圖(2)AB、AC是這個等腰三角形的腰.

  (2)等邊三角形;三條邊都相等的三角形叫等邊三角形(或正三角形)

  問:等邊三角形是不是等腰三角形?

  [等邊三角形是特殊的等腰三角形,但等腰三角形不一定都是等邊三角形]

  三角形按邊來分,可分為:

  三邊都不相等的三角形

  只有兩邊相等的三角形

  等邊三角形

  三、鞏固練習

  教科書圖9.1.6中找出等腰三角形、正三角形、銳角三角邊、直角三角形、鈍角三角形.

  四、小結(jié)

  l、三角形的概念,一個三角形有三個頂點,三條邊,三個內(nèi)角,六個外角,和三角形一個內(nèi)角相鄰的外角有2個,它們是對頂角,若一個頂點只取一個外角,那么只有3個外角.

  2.三角形的分類:按角分為三類:①銳角三角形,②直角三角形,③鈍角三角形.按邊分為三類:①三邊都不相等的三角形;②等腰三角形.

  等邊三角形只是等腰三角形中的一種特殊的三角形.

  五、作業(yè)

  教科書第61頁練習1、2.

【初中數(shù)學三角形教案】相關(guān)文章:

初中數(shù)學《全等三角形》教案01-09

數(shù)學全等三角形教案12-30

初中數(shù)學 教案02-24

數(shù)學初中教案11-06

《認識三角形》數(shù)學教案01-31

“三角形的認識”數(shù)學教案02-02

三角形分類數(shù)學教案02-02

三角形的邊數(shù)學教案02-22

三角形的內(nèi)角數(shù)學教案02-08