亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數(shù)學(xué)教案

時間:2024-07-15 22:29:57 秀雯 初中數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)教案(通用15篇)

  作為一位無私奉獻的人民教師,往往需要進行教案編寫工作,借助教案可以更好地組織教學(xué)活動。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家整理的初中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

初中數(shù)學(xué)教案(通用15篇)

  初中數(shù)學(xué)教案 1

  教學(xué)目標:

  1、進一步理解函數(shù)的概念,能從簡單的實際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;

  2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍;

  3、會求函數(shù)值,并體會自變量與函數(shù)值間的對應(yīng)關(guān)系;

  4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法;

  5、通過函數(shù)的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的,是有規(guī)律地運動變化著的;

  教學(xué)重點:

  了解函數(shù)的意義,會求自變量的取值范圍及求函數(shù)值。

  教學(xué)難點:

  函數(shù)概念的抽象性

  教學(xué)過程:

  (一)引入新課:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

  生活中有很多實例反映了函數(shù)關(guān)系,你能舉出一個,并指出式中的自變量與函數(shù)嗎?

  1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系。

  2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的'關(guān)系。

  解:1、y=30n

  y是函數(shù),n是自變量

  2、n是函數(shù),a是自變量

 。ǘ┲v授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的,這種用數(shù)學(xué)式子表示函數(shù)時,要考慮自變量的取值必須使解析式有意義,如第一題中的學(xué)生數(shù)n必須是正整數(shù)。

  例1、求下列函數(shù)中自變量x的取值范圍。

 。1)(2)

  (3)(4)

 。5)(6)

  分析:在(1)、(2)中,x取任意實數(shù),與都有意義

 。3)小題的是一個分式,分式成立的條件是分母不為0,這道題的分母是,因此要求。

  同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且。

  第(5)小題,是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零,的被開方數(shù)是。

  同理,第(6)小題也是二次根式,是被開方數(shù),

  小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時,自變量可取全體實數(shù);函數(shù)的解析式是分式時,自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零。

  注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認為,凡是分母,只要即可。教師可將解題步驟設(shè)計得細致一些。先提問本題的分母是什么?然后再要求分式的分母不為零。求出使函數(shù)成立的自變量的取值范圍。二次根式的問題也與次類似。

  但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成或。在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用。限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”。說明這里與是并且的關(guān)系。即2與-1這兩個值x都不能取。

  例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元。

  (1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費收入為y元,試寫出y關(guān)于x的函數(shù)關(guān)系式;

  (2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數(shù)的范圍。

  解:(1)

 。▁是正整數(shù),

  (2)若變速車的輛次不小于25%,但不大于40%,

  則收入在1225元至1330元之間

  總結(jié):對于反映實際問題的函數(shù)關(guān)系,應(yīng)使得實際問題有意義,這樣,就要求聯(lián)系實際,具體問題具體分析。

  對于函數(shù),當(dāng)自變量時,相應(yīng)的函數(shù)y的值是。60叫做這個函數(shù)當(dāng)時的函數(shù)值。

  例3、求下列函數(shù)當(dāng)時的函數(shù)值:

 。1)————(2)—————

  (3)————(4)——————

  注:本例既鍛煉了學(xué)生的計算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會對于x的每一個值,y都有唯一確定的值與之對應(yīng)。以此加深對函數(shù)的理解。

 。ǘ┬〗Y(jié):

  這節(jié)課,我們進一步地研究了有關(guān)函數(shù)的概念。在研究函數(shù)關(guān)系時首先要考慮自變量的取值范圍。因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值。另外,對于反映實際問題的函數(shù)關(guān)系,要具體問題具體分析。

  作業(yè):習(xí)題13.2A組2、3、5

  今天的內(nèi)容就介紹到這里了。

  初中數(shù)學(xué)教案 2

  一、內(nèi)容和內(nèi)容解析

 。ㄒ唬﹥(nèi)容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集。

 。ǘ﹥(nèi)容解析

  現(xiàn)實生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系。本節(jié)課從生活實際出發(fā)導(dǎo)入常見行程問題的不等關(guān)系,使學(xué)生充分認識到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望。再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念。前面學(xué)過方程、方程的解、解方程的概念。通過類比教學(xué)、不等式、不等式的解、解不等式幾個概念不難理解。但是對于初學(xué)者而言,不等式的解集的理解就有一定的難度。因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助;谝陨戏治觯梢源_定本節(jié)課的教學(xué)重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上。

  二、目標和目標解析

 。ㄒ唬┙虒W(xué)目標

  1.理解不等式的概念

  2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系

  3.了解解不等式的概念

  4.用數(shù)軸來表示簡單不等式的解集

 。ǘ┠繕私馕

  1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數(shù)式

  2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合

  3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程

  4、達成目標4的標志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右

  三、教學(xué)問題診斷分析

  本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的.解、解方程類比教學(xué),學(xué)生不難理解,但是對不等式的解集的理解就有一定的難度

  因此,本節(jié)課的教學(xué)難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集

  四、教學(xué)支持條件分析

  利用多媒體直觀演示課前引入問題,激發(fā)學(xué)生的學(xué)習(xí)興趣

  五、教學(xué)過程設(shè)計

  (一)動畫演示情景激趣多媒體演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?設(shè)計意圖:通過實例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣

 。ǘ┝⒆銓嶋H引出新知

  問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應(yīng)滿足什么條件?

  小組討論,合作交流,然后小組反饋交流結(jié)果,最后,老師將小組反饋意見進行整理(學(xué)生沒有討論出來的思路老師進行補充)

  1.從時間方面慮:

  2.從行程方面:<>50 3,從速度方面考慮:x>50÷

  設(shè)計意圖:培養(yǎng)學(xué)生合作、交流的意識習(xí)慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解,老師對問題解決方法的梳理與補充,發(fā)散學(xué)生思維,培養(yǎng)學(xué)生分析問題、解決問題的能力

 。ㄈ┚o扣問題概念辨析

  1.不等式

  設(shè)問1:什么是不等式?

  設(shè)問2:能否舉例說明?由學(xué)生自學(xué),老師可作適當(dāng)補充,比如:是不等式

  2.不等式的解

  設(shè)問1:什么是不等式的解?設(shè)問

  2:不等式的解是唯一的嗎?由學(xué)生自學(xué)再討論

  老師點撥:由x>50÷得x>75說明x任意取一個大于75的數(shù)都是不等式

  3.不等式的解集

  設(shè)問1:什么是不等式的解集?<,>50的解,<,>50,x>50÷都設(shè)問

  2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學(xué)生自學(xué)后再小組合作交流

  老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合

  4.解不等式

  設(shè)問1:什么是解不等式?由學(xué)生回答

  老師強調(diào):解不等式是一個過程

  設(shè)計意圖:培養(yǎng)學(xué)生的自學(xué)能力,進一步培養(yǎng)學(xué)生合作交流的意識,遵循學(xué)生的認知規(guī)律,有意識、有計劃、有條理地設(shè)計一些問題,可以讓學(xué)生始終處于積極的思維狀態(tài),不知不覺中接受了新知識,老師再適當(dāng)點撥,加深理解

 。ㄋ模⿺(shù)形結(jié)合,深化認識

  問題1:由上可知,x>75既是不等式的解集,那么在數(shù)軸上如何表示x>75呢?問題

  2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準確性老師適當(dāng)補充:“≥”與“≤”的意義,并強調(diào)用“≥”或“≤”連接的式子也是不等式,比如x≤ 75就是不等式

  設(shè)計意圖:通過數(shù)軸的直觀讓學(xué)生對不等式的解集進一步加深理解,滲透數(shù)形結(jié)合思想

 。ㄎ澹w納小結(jié),反思

  提高教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答如下問題

  1、什么是不等式?

 。嫉慕饧,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?

  4、用數(shù)軸表示不等式的解集要注意哪些方面?

  設(shè)計意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學(xué)習(xí)經(jīng)驗

 。┎贾米鳂I(yè),課外反饋

  教科書第119頁第1題,第120頁第2,3題

  設(shè)計意圖:通過課后作業(yè),教師及時了解學(xué)生對本節(jié)課知識的掌握情況,以便對教學(xué)進度和方法進行適當(dāng)?shù)恼{(diào)整

  六、目標檢測設(shè)計

  1.填空

  下列式子中屬于不等式的有___________________________

  ①x +7>

 、趚≥ y + 2 = 0

 、 5x + 7

  設(shè)計意圖:讓學(xué)生正確區(qū)分不等式、等式與代數(shù)式,進一步鞏固不等式的概念

  2.用不等式表示

 、 a與5的和小于7

  ② a的與b的3倍的和是非負數(shù)

 、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件

  設(shè)計意圖:培養(yǎng)學(xué)生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負數(shù)(正數(shù)或負數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數(shù)量的實際意義。

  初中數(shù)學(xué)教案 3

  知識技能目標

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);

  2、利用反比例函數(shù)的圖象解決有關(guān)問題。

  過程性目標

  1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);

  2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題。

  教學(xué)過程

  一、創(chuàng)設(shè)情境

  上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。

  二、探究歸納

  1、畫出函數(shù)的圖象。

  分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:

  2、描點:用表里各組對應(yīng)值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問這兩條曲線會與x軸、y軸相交嗎?為什么?

  學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。

  學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。

  1、這個函數(shù)的.圖象在哪兩個象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?

  3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質(zhì):

  (1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

  (2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

  注

  1、雙曲線的兩個分支與x軸和y軸沒有交點;

  2、雙曲線的兩個分支關(guān)于原點成中心對稱。

  以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?

  在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。

  在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

  三、實踐應(yīng)用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。

  分析由于反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

  解因為反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。

  例3已知反比例函數(shù)的圖象過點(1,—2)。

 。1)求這個函數(shù)的解析式,并畫出圖象;

 。2)若點A(—5,m)在圖象上,則點A關(guān)于兩坐標軸和原點的對稱點是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過點(1,—2),即當(dāng)x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;

 。2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關(guān)于兩坐標軸和原點的對稱點是否在圖象上。

  解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過點(1,—2),即當(dāng)x=1時,y=—2。

  所以,k=—2。

  即反比例函數(shù)的解析式為:。

 。2)點A(—5,m)在反比例函數(shù)圖象上,所以,

  點A的坐標為。

  點A關(guān)于x軸的對稱點不在這個圖象上;

  點A關(guān)于y軸的對稱點不在這個圖象上;

  點A關(guān)于原點的對稱點在這個圖象上;

  例4已知函數(shù)為反比例函數(shù)。

 。1)求m的值;

  (2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

 。3)當(dāng)—3≤x≤時,求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的定義可知:解得,m=—2。

 。2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

  (3)因為在第個象限內(nèi),y隨x的增大而增大,

  所以當(dāng)x=時,y最大值=;

  當(dāng)x=—3時,y最小值=。

  所以當(dāng)—3≤x≤時,此函數(shù)的最大值為8,最小值為。

  例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

 。1)寫出用高表示長的函數(shù)關(guān)系式;

 。2)寫出自變量x的取值范圍;

 。3)畫出函數(shù)的圖象。

  解(1)因為100=5xy,所以。

 。2)x>0。

 。3)圖象如下:

  說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。

  四、交流反思

  本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質(zhì):

 。1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

  五、檢測反饋

  1、在同一直角坐標系中畫出下列函數(shù)的圖象:

 。1);(2)。

  2、已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:

  (1)y和x的函數(shù)關(guān)系式;

 。2)當(dāng)時,y的值;

  (3)當(dāng)x取何值時,?

  3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:

 。1)m和n的值;

 。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0

  初中數(shù)學(xué)教案 4

  教學(xué)目標:

  1、理解切線的判定定理,并學(xué)會運用。

  2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

  教學(xué)重點:切線的判定定理和切線判定的方法。

  教學(xué)難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視一。

  教學(xué)過程:

  一、復(fù)習(xí)提問

  【教師】

  問題1.怎樣過直線l上一點P作已知直線的垂線?

  問題2.直線和圓有幾種位置關(guān)系?

  問題3.如何判定直線l是⊙O的切線?

  啟發(fā):(1)直線l和⊙O的公共點有幾個?

 。2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系 如何?

  學(xué)生答完后,教師強調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)

  再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)

  二、引入新課內(nèi)容

  【學(xué)生】命題:經(jīng)過半徑的在圓上的端點且垂直于半 徑的直線是圓的.切線。

  證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本P60。

  定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線

  定理的證明:已知:直線l經(jīng)過半徑OA的外端點A,直線l⊥OA,

  求證:直線l是⊙O的切線

  證明:略

  定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A

  ∴直線l為⊙O的切線。

  是非題:

 。1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )

 。2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )

  三、例題講解

  例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。

  求證:直線AB是⊙O的切線。

  引導(dǎo)學(xué)生分析:由于AB過⊙O上的點C,所以連結(jié)OC,只要證明AB⊥OC即可。

  證明:連結(jié)OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直線AB經(jīng)過半徑OC的外端C

  ∴直線AB是⊙O的切線。

  練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

  練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

  求證:CD是⊙O的切線。

  例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

  求證:DE是⊙O的切線。

  思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以 D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

  四、小結(jié)

  1.切線的判定定理。

  2.判定一條直線是圓的切線的方法:

 、俣x:直線和圓有唯一公共點。

 、跀(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r)。[

  ③切線的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。

  3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

  凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結(jié)"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

  五、布置作業(yè):略

  《切線的判定》教后體會

  本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點,呈現(xiàn)學(xué)生真實的思維過程為教學(xué)宗旨,進行教學(xué)設(shè)計,目的在于讓學(xué)生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:

  成功之處:

  一、 教材的二度設(shè)計順應(yīng)了學(xué)生的認知規(guī)律

  這批學(xué)生習(xí)慣于單一知識點的學(xué)習(xí),即得出一個知識點,必須由淺入深反復(fù)進行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學(xué)生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點多不知所措,在云里霧里。二度設(shè)計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設(shè)計即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個循序漸進、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。

  二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念

  數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運用數(shù)學(xué)思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實證明,學(xué)生有這樣的理解、概括和表達能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。

  不足之處:

  一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個教學(xué)過程是在一個平靜、和諧的氛圍中完成的。

  二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。

  三、教學(xué)風(fēng)格的定勢使所授知識不能很合理地與生活實際相聯(lián)系,一定程度上阻礙了學(xué)生解決實際問題能力的發(fā)展。

  通過本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實驗,舍得放手,盡量培養(yǎng)學(xué)生主體意識,問題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實情境、充足的思考時間和活動空間,給學(xué)生表現(xiàn)自我的機會和成功的體驗,培養(yǎng)學(xué)生的自我意識,發(fā)揮學(xué)生的主體作用,來真正實現(xiàn)《數(shù)學(xué)課程標準》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。

  初中數(shù)學(xué)教案 5

  學(xué)習(xí)目標:

  1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過類比平行四邊形的性質(zhì)定理,推導(dǎo)并掌握矩形的性質(zhì)定理,會用定理進行一些簡單的計算證明、

  3、通過矩形的對角線相等這一性質(zhì)能推導(dǎo)出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內(nèi)在聯(lián)系,發(fā)展學(xué)生的合理推理的能力

  學(xué)習(xí)重難點:

  重點:矩形的性質(zhì)定理

  難點:靈活應(yīng)用矩形的性質(zhì)進行有關(guān)的計算與證明

  課前準備

  教具準備:活動平行四邊形框架、教師準備PPT課件

  教學(xué)過程:

  知識回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質(zhì)?

  【設(shè)計意圖】:

  通過對舊知的復(fù)習(xí),一方面鞏固就知,另一方面為學(xué)習(xí)新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?

  用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當(dāng)平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  【設(shè)計意圖】:

  通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學(xué)生更多的思考空間,促進學(xué)生積極思考,發(fā)展學(xué)生的思維

  歸納:有一個角是直角的`平行四邊形叫做矩形、

  合作探究二:矩形的性質(zhì)定理

  1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題

  2、小組合作:完成對性質(zhì)的證明過程

  【設(shè)計意圖】:

  通過利用手中的矩形紙片動手操作使學(xué)生對矩形的性質(zhì)獲得豐富的直觀體驗,為總結(jié)矩形的性質(zhì)定理打下堅實基礎(chǔ)

  矩形的性質(zhì)定理1:矩形的四個角都是直角

  矩形的性質(zhì)定理2:矩形的兩條對角線相等

  合作探究三:直角三角形的性質(zhì)定理3

  設(shè)矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段

 。˙O是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關(guān)系,為什么?

  【設(shè)計意圖】:

  根據(jù)圖形學(xué)生很容易猜想結(jié)果,關(guān)鍵是從數(shù)學(xué)的角度證明留足充分的時間讓學(xué)生交流,教師適時引導(dǎo),明確論證方法、學(xué)生獨立完成證明,以培養(yǎng)學(xué)生的推理能力、讓學(xué)生感受數(shù)學(xué)結(jié)論的確定性和證明的必要性

  結(jié)論:直角三角形斜邊上的中線等于斜邊的一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?

  當(dāng)堂檢測:

  1、矩形具有而平行四邊形不具有的性質(zhì)( )

  (A)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

 。1)若BD=3㎝,則AC=㎝

 。2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長

  4、工人師傅做鋁合金窗框分下面三個步驟進行:

 。1)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

 。2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據(jù)的數(shù)學(xué)道理是__________;

  (3)將直角尺靠緊窗框的一個角(如圖3)調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據(jù)的數(shù)學(xué)道理是________________。

  課堂小結(jié):

  請說出你本節(jié)課的收獲,與大家一塊分享!

  作業(yè):

  課本P、20第2題

  初中數(shù)學(xué)教案 6

  知識技能

  會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

  數(shù)學(xué)思考

  1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進一步發(fā)展符號意識。

  2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。

  解決問題

  能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。

  經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

  情感態(tài)度

  經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。

  教學(xué)重點

  建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。

  教學(xué)難點

  分析實際問題中的相等關(guān)系,列出方程。

  教學(xué)過程

  活動一 知識回顧

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?

  教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。

  出示問題(幻燈片)。

  學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。

  教師提問:(略)

  教師追問:變形的依據(jù)是什么?

  學(xué)生獨立思考、回答交流。

  本次活動中教師關(guān)注:

 。1)學(xué)生能否準確理解運用等式性質(zhì)和合并同列項求解方程。

 。2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。

  通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。

  活動二 問題探究

  問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本這個班有多少學(xué)生?

  教師:出示問題(投影片)

  提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>

 。▽W(xué)生嘗試提問)

  學(xué)生:讀題,審題,獨立思考,討論交流。

  1.找出問題中的已知數(shù)和已知條件。(獨立回答)

  2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。

  3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)

  4.找相等關(guān)系:

  這批書的總數(shù)是一個定值,表示它的兩個等式相等(學(xué)生回答,教師追問)

  5.列方程:3x+20=4x-25(1)

  總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?

  教師提問1:這個方程與我們前面解過的方程有什么不同?

  學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25)

  教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?

  學(xué)生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20

  3x-4x=-25-20(2)

  教師提問3:以上變形依據(jù)是什么?

  學(xué)生回答:等式的性質(zhì)1。

  歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。

  師生共同完成解答過程。

  設(shè)問4:以上解方程中“移項”起了什么作用?

  學(xué)生討論、回答,師生共同整理:

  通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。

  教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?

  學(xué)生思考回答。

  教師關(guān)注:

 。1)學(xué)生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?

  在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。

  活動三 解法運用

  例2解方程

  3x+7=32-2x

  教師:出示問題

  提問:解這個方程時,第一步我們先干什么?

  學(xué)生講解,獨立完成,板演。

  提問:“移項”是注意什么?

  學(xué)生:變號。

  教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。

  通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的.解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。

  活動四 鞏固提高

  1.第91頁練習(xí)(1)(2)

  2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?

  3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。

  教師按順序出示問題。

  學(xué)生獨立完成,用實物投影展示部分學(xué)而生練習(xí)。

  教師關(guān)注:

  1.學(xué)生在計算中可能出現(xiàn)的錯誤。

  2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。

  3.用實物投影展示學(xué)困生的完成情況,進行評價、鼓勵。

  鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。

  2、3題的重點是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。

  活動五

  提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?

  提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?

  教師組織學(xué)生就本節(jié)課所學(xué)知識進行小結(jié)。

  學(xué)生進行總結(jié)歸納、回答交流,相互完善補充。

  教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。

  引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運用。

  布置作業(yè):

  第93頁第3題

  初中數(shù)學(xué)教案 7

  教學(xué)目標

  1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。

  2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。

  3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。

  4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的興趣。

  重點

  1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。

  2.通過拼圖驗證公式的.過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。

  難點

  利用數(shù)形結(jié)合的方法驗證公式

  教學(xué)方法

  動手操作,合作探究課型新授課教具投影儀

  教師活動學(xué)生活動

  情景設(shè)置:

  你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)

  新課講解:

  把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁例題的拼法及相關(guān)公式

  提問:還能通過怎樣拼圖來解決以下問題

 。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應(yīng)的等式;

 。2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2

  試用拼一個長方形的方法,把這個二次三項式因式分解。

  這個問題要給予學(xué)生充足的時間和空間進行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時鼓勵學(xué)生在拼圖過程中進行交流合作

  了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。

  小結(jié):

  從這節(jié)課中你有哪些收獲?

 。ń處煈(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)

  學(xué)生回答

  a(b+c+d)=ab+ac+ad

  (a+b)(c+d)=ac+ad+bc+bd

 。╝+b)2=a2+2ab+b2

  學(xué)生拿出準備好的硬紙板制作

  給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。

  初中數(shù)學(xué)教案 8

  三維目標

  一、知識與技能

  1.能靈活列反比例函數(shù)表達式解決一些實際問題

  2.能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實際問題

  二、過程與方法

  1.經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題

  2. 體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識,提高運用代數(shù)方法解決問題的能力

  三、情感態(tài)度與價值觀

  1.積極參與交流,并積極發(fā)表意見

  2.體驗反比例函數(shù)是有效地描述物理世界的重要手段,認識到數(shù)學(xué)是解決實際問題和進行交流的重要工具

  教學(xué)重點

  掌握從物理問題中建構(gòu)反比例函數(shù)模型

  教學(xué)難點

  從實際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運用所學(xué)知識分析物理問題,建立函數(shù)模型,教學(xué)時注意分析過程,滲透數(shù)形結(jié)合的思想

  教具準備

  多媒體課件

  教學(xué)過程

  一、創(chuàng)設(shè)問題情境,引入新課

  活動1

  問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用,下面的例子就是其中之一

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時,電流I=2安培

  (1)求I與R之間的函數(shù)關(guān)系式;

  (2)當(dāng)電流I=0.5時,求電阻R的值

  設(shè)計意圖:

  運用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力

  師生行為:

  可由學(xué)生獨立思考,領(lǐng)會反比例函數(shù)在物理學(xué)中的綜合應(yīng)用

  教師應(yīng)給“學(xué)困生”一點物理學(xué)知識的引導(dǎo)

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達式,再由已知條件(I與R的一對對應(yīng)值)得到字母系數(shù)k的值

  生:(1)解:設(shè)I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R

  (2) 當(dāng)I=0.5時,R=10I=100.5 =20(歐姆)

  師:很好!“給我一個支點,我可以把地球撬動”這是哪一位科學(xué)家的名言?這里蘊涵著什么 樣的原理呢?

  生:這是古希臘科學(xué)家阿基米德的名言

  師:是的,公元前3世紀,古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;

  阻力×阻力臂=動力×動力臂(如下圖)

  下面我們就來看一例子

  二、講授新課

  活動2

  小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米

  (1)動力F與動力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動力臂為1.5米時,撬動石頭至少需要多大的.力?

  (2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?

  設(shè)計意圖:

  物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系。因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用

  師生行為:

  先由學(xué)生根據(jù)“杠桿定律”解決上述問題。

  教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系

  教師在此活動中應(yīng)重點關(guān)注

 、賹W(xué)生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數(shù)的關(guān)系;

  ②學(xué)生能否面對困難,認真思考,尋找解題的途徑;

 、蹖W(xué)生能否積極主動地參與數(shù)學(xué)活動,對數(shù)學(xué)和物理有著濃厚的興趣

  師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題

  生:解:(1)根據(jù)“杠桿定律” 有

  Fl=1200×0.5,得F =600l

  當(dāng)l=1.5時,F(xiàn)=6001.5 =400

  因此,撬動石頭至少需要400牛頓的力

  (2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

  Fl=600,

  l=600F .

  當(dāng)F=400×12 =200時,

  l=600200 =3

  3-1.5=1.5(米)

  因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米

  生:也可用不等式來解,如下:

  Fl=600,F(xiàn)=600l

  而F≤400×12 =200時

  600l ≤200

  l≥3

  所以l-1.5≥3-1.5=1.5

  即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米

  生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出

  師:很棒!請同學(xué)們下去親自畫出圖象完成,現(xiàn)在請同學(xué)們思考下列問題:

  用反比例函數(shù)的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?

  生:因為阻力和阻力臂不變,設(shè)動力臂為l,動力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)

  根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力

  師:其實反比例函數(shù)在實際運用中非常廣泛,例如在解決經(jīng)濟預(yù)算問題中的應(yīng)用

  活動3

  問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例。又當(dāng)x=0.65元時,y=0.8.

  (1)求y與x之間的函數(shù)關(guān)系式;

  (2)若每度電的成本價0.3元,電價調(diào)至0.6元,請你預(yù)算一下本年度電力部門的純收人多少?

  設(shè)計意圖:

  在生活中各部門,經(jīng)常遇到經(jīng)濟預(yù)算等問題,有時關(guān)系到因素之間是反比例函數(shù)關(guān)系,對于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進而用函數(shù)關(guān)系式解決一個具體問題

  師生行為:

  由學(xué)生先獨立思考,然后小組內(nèi)討論完成

  教師應(yīng)給予“學(xué)困生”以一定的幫助

  生:解:(1)∵y與x -0.4成反比例,

  ∴設(shè)y=kx-0.4 (k≠0)

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數(shù)關(guān)系為y=15x-2

  (2)根據(jù)題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,

  師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個變量,于是可設(shè)出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數(shù)的值;

  (2)純收入=總收入-總成本

  三、鞏固提高

  活動4

  一定質(zhì)量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值

  設(shè)計意圖:

  進一步體現(xiàn)物理和反比例函數(shù)的關(guān)系

  師生行為

  由學(xué)生獨立完成,教師講評

  師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數(shù)關(guān)系

  生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ

  生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得

  V=990ρ =9901.1 =900(m3)

  所以當(dāng)密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3

  四、課時小結(jié)

  活動5

  你對本節(jié)內(nèi)容有哪些認識?重點掌握利用函數(shù)關(guān)系解實際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得。

  設(shè)計意圖:

  這種形式的小結(jié),激發(fā)了學(xué)生的主動參與意識,調(diào)動了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗機會,并為程度不同的學(xué)生提供了充分展示自己的機會,尊重學(xué)生的個體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實效性。

  師生行為:

  學(xué)生可分小組活動,在小組內(nèi)交流收獲, 然后由小組代表在全班交流。

  教師組織學(xué)生小結(jié)。

  反比例函數(shù)與現(xiàn)實生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ)。用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系。

  板書設(shè)計

  17.2 實際問題與反比例函數(shù)(三)

  用反比例函數(shù)的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?

  設(shè)阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0)。動力和動力臂分別為F,l。則根據(jù)杠桿定理,

  Fl=k 即F=kl (k>0且k為常數(shù))。

  由此可知F是l的反比例函數(shù),并且當(dāng)k>0時,F(xiàn)隨l的增大而減小。

  活動與探究

  學(xué)校準備在校園內(nèi)修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示

  (1)綠化帶面積是多少?你能寫出這一函數(shù)表達式嗎?

  (2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?

  x(m) 10 20 30 40

  y(m)

  過程:點A(40,10)在反比例函數(shù)圖象上說明點A的橫縱坐標滿足反比例函數(shù)表達式,代入可求得反比例函數(shù)k的值

  結(jié)果:

  (1)綠化帶面積為10×40=400(m2)

  設(shè)該反比例函數(shù)的表達式為y=kx ,

  ∵圖象經(jīng)過點A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400。

  ∴函數(shù)表達式為y=400x .

  (2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403 ,10。從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。

  初中數(shù)學(xué)教案 9

  一、教學(xué)任務(wù)分析

  1、教學(xué)目標定位

  根據(jù)《數(shù)學(xué)課程標準》和素質(zhì)教育的要求,結(jié)合學(xué)生的認知規(guī)律及心理特征而確定,即:七年級的學(xué)生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結(jié)表達的能力。因此,確定如下教學(xué)目標:

 。1).知識技能目標

  讓學(xué)生掌握多邊形的內(nèi)角和的公式并熟練應(yīng)用。

 。2).過程和方法目標

  讓學(xué)生經(jīng)歷知識的形成過程,認識數(shù)學(xué)特征,獲得數(shù)學(xué)經(jīng)驗,進一步發(fā)展學(xué)生的說理意識和簡單推理,合情推理能力。

  (3).情感目標

  激勵學(xué)生的學(xué)習(xí)熱情,調(diào)動他們的學(xué)習(xí)積極性,使他們有自信心,激發(fā)學(xué)生樂于合作交流意識和獨立思考的習(xí)慣。

  2、教學(xué)重、難點定位

  教學(xué)重點是多邊形的內(nèi)角和的得出和應(yīng)用。

  教學(xué)難點是探索和歸納多邊形內(nèi)角和的過程。

  二、教學(xué)內(nèi)容分析

  1、教材的地位與作用

  本課選自人教版數(shù)學(xué)七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進,這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認知特點。

  2、聯(lián)系及應(yīng)用

  本節(jié)課是以三角形的知識為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此

  多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會把復(fù)雜化為簡單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實用圖案等方面有許多的實際應(yīng)用,下一節(jié)平面鑲嵌就要用到,讓學(xué)生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。

  三、教學(xué)診斷分析

  學(xué)生對三角形的知識都已經(jīng)掌握。讓學(xué)生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學(xué)生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結(jié)論最直接的方法就是用量角器來度量。讓學(xué)生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導(dǎo)學(xué)生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應(yīng)用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學(xué)生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導(dǎo),學(xué)習(xí)將新問題化歸為已有結(jié)論的思想方法,這里學(xué)生都容易理解。課堂教學(xué)設(shè)計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學(xué)生動手實踐,設(shè)置探究活動二,為了讓學(xué)生拓寬思路,從不同的'角度去思考這個問題,這個活動對學(xué)生的動手能力要求進一步提高了,學(xué)生對這個問題的理解稍微有些難度,但學(xué)生可根據(jù)自己本身的特點來加以補充和完善。在教學(xué)設(shè)計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務(wù)完成;最后,學(xué)生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學(xué)生合情推理的意識。

  四、教法特點及預(yù)期效果分析

  本節(jié)課借鑒了美國教育家杜威的"在做中學(xué)"的理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間"的思想,我確定如下教法和學(xué)法:

  1、教學(xué)方法的設(shè)計

  我采用了探究式教學(xué)方法,整個探究學(xué)習(xí)的過程充滿了師生之間,學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

  2、活動的開展

  利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術(shù)的應(yīng)用

  我利用課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學(xué)設(shè)計中占了非常大的比例,探究活動一設(shè)置目的讓學(xué)生動手實踐,并把新知識與學(xué)過的三角形的相關(guān)知識聯(lián)系起來;探究活動二設(shè)置目的讓學(xué)生拓寬思路,為放開書本的束縛打下基礎(chǔ);培養(yǎng)學(xué)生動手操作的能力和合情推理的意識。通過師生共同活動,訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神;使學(xué)生懂得數(shù)學(xué)內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點。練習(xí)活動的設(shè)計,目的一檢查學(xué)生的掌握知識的情況,并促進學(xué)生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學(xué)生情感交流。

  以上是我對《多邊形的內(nèi)角和》的教學(xué)設(shè)計說明。

  初中數(shù)學(xué)教案 10

  教學(xué)目標

 。1)認知目標

  理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實際問題。

 。2)技能目標

  經(jīng)歷從分數(shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認識。

 。3)情感態(tài)度與價值觀

  教學(xué)中讓學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗。

  教學(xué)重難點

  重點:運用分式的乘除法法則進行運算。

  難點:分子、分母為多項式的分式乘除運算。

  教學(xué)過程

  (一)提出問題,引入課題

  俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:

  問題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。

  問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。

  從實際出發(fā),引出分式的'乘除的實在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實際需要,從而激發(fā)學(xué)生興趣和求知欲。

 。ǘ╊惐嚷(lián)想,探究新知

  從學(xué)生熟悉的分數(shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。

  解后總結(jié)概括:

 。1)式是什么運算?依據(jù)是什么?

 。2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說出依據(jù)的是:分數(shù)的乘法和除法法則)教師加以肯定,并指出與分數(shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分數(shù)的乘除法則,猜想出分式的乘除法則。

  (分式的乘除法法則)

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

 。ㄈ├}分析,應(yīng)用新知

  師生活動:教師參與并指導(dǎo),學(xué)生獨立思考,并嘗試完成例題。

  P11的例1,在例題分析過程中,為了突出重點,應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學(xué)生一起詳細分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。

 。ㄋ模┚毩(xí)鞏固,培養(yǎng)能力

  P13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。

  師生活動:教師出示問題,學(xué)生獨立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。

  通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。

 。ㄎ澹┱n堂小結(jié),回扣目標

  引導(dǎo)學(xué)生自主進行課堂小結(jié):

  1、本節(jié)課我們學(xué)習(xí)了哪些知識?

  2、在知識應(yīng)用過程中需要注意什么?

  3、你有什么收獲呢?

  師生活動:學(xué)生反思,提出疑問,集體交流。

  (六)布置作業(yè)

  教科書習(xí)題6.2第1、2(必做)練習(xí)冊P(選做),我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。

  板書設(shè)計

  在本節(jié)課中我將采用提綱式的板書設(shè)計,因為提綱式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶。

  初中數(shù)學(xué)教案 11

  【教學(xué)目標】

  1、掌握多邊形的內(nèi)角和的計算方法,并能用內(nèi)角和知識解決一些簡單的問題。

  2、經(jīng)歷探索多邊形內(nèi)角和計算公式的過程,體會如何探索研究問題。

  3、通過將多邊形"分割"為三角形的過程體驗,初步認識"轉(zhuǎn)化"的數(shù)學(xué)思想。

  【教學(xué)重點與教學(xué)難點】

  1、重點:多邊形的內(nèi)角和公式。

  2、難點:多邊形內(nèi)角和的推導(dǎo)。

  3、關(guān)鍵:。多邊形"分割"為三角形。

  【教具準備】

  三角板、卡紙

  【教學(xué)過程】

  一、創(chuàng)設(shè)情景,揭示問題

  1、在一次數(shù)學(xué)基礎(chǔ)知識搶答賽中,老師出了這么一個問題,一個五邊形的所有角相加等于多少度?一個學(xué)生馬上能回答,你們能嗎?

  2、教具演示:將一個五邊形沿對角線剪開,能分割成幾個三角形?

  你能說出五邊形的內(nèi)角和是多少度嗎?(點題)意圖:利用搶答問題和教具演示,調(diào)動學(xué)生的`學(xué)習(xí)興趣和注意力

  二、探索研究學(xué)會新知

  1、回顧舊知,引出問題:

 。1)三角形的內(nèi)角和等于_________。外角和等于____________

  (2)長方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________。

  2、探索四邊形的內(nèi)角和:

 。1)學(xué)生思考,同學(xué)討論交流。

 。2)學(xué)生敘述對四邊形內(nèi)角和的認識(第一二組通過測量相加,第三四組通過畫對角線分成兩個三角形。)回顧三角形,正方形,長方形內(nèi)角和,使學(xué)生對新問題進行思考與猜想。以四邊形的內(nèi)角和作為探索多邊形的。突破口。

 。3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:

  方法一:連接一條對角線,分成2個三角形:

  180°+180°=360°

  從簡單的思維方式發(fā)散學(xué)生的想象力達到"分割"問題,并讓學(xué)生發(fā)現(xiàn)問題,解決問題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點,與頂點連接組成4個三角形。

  180°×4-360°=360°

  3、探索多邊形內(nèi)角和的問題,提出階梯式的問題:

  你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)

  你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?

  4、及時運用,掌握新知:

 。1)一個八邊形的內(nèi)角和是_____________度

 。2)一個多邊形的內(nèi)角和是720度,這個多邊形是_____邊形

  (3)一個正五邊形的每一個內(nèi)角是________,那么正六邊形的每個內(nèi)角是_________

  通過學(xué)生動手去用分割法求五(六)邊形的內(nèi)角和,從簡單到復(fù)雜,從而歸納出n邊形的內(nèi)角和。

  三、點例透析

  運用新知例題:想一想:如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系呢?

  四、應(yīng)用訓(xùn)練強化理解

  4、第83頁練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用

  五、知識回放

  課堂小結(jié)提問方式:本節(jié)課我們學(xué)習(xí)了什么?

  1、多邊形內(nèi)角和公式。

  2、多邊形內(nèi)角和計算是通過轉(zhuǎn)化為三角形。

  六、作業(yè)練習(xí)

  1、書面作業(yè):

  2、課外練習(xí):

  初中數(shù)學(xué)教案 12

  一、教材分析

  本節(jié)課是人民教育出版社義務(wù)教育課程標準實驗教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。

  二、教學(xué)目標

  1、知識目標:了解多邊形內(nèi)角和公式。

  2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認識問題的方法。

  3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

  三、教學(xué)重、難點

  重點:探索多邊形內(nèi)角和。

  難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。

  四、教學(xué)方法:

  引導(dǎo)發(fā)現(xiàn)法、討論法

  五、教具、學(xué)具

  教具:多媒體課件

  學(xué)具:三角板、量角器

  六、教學(xué)媒體:

  大屏幕、實物投影

  七、教學(xué)過程:

  (一)創(chuàng)設(shè)情境,設(shè)疑激思

  師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?

  活動一:探究四邊形內(nèi)角和。

  在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。

  方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360。

  方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360。

  接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。

  師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

  活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。

  學(xué)生先獨立思考每個問題再分組討論。

  關(guān)注:

 。1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。

  (2)學(xué)生能否采用不同的方法。

  學(xué)生分組討論后進行交流(五邊形的內(nèi)角和)

  方法1:把五邊形分成三個三角形,3個180的`和是540。

  方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結(jié)果得540。

  方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結(jié)果得540。

  方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結(jié)果得540。

  師:你真聰明!做到了學(xué)以致用。

  交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。

  得到五邊形的內(nèi)角和之后,同學(xué)們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。

 。ǘ┮晁伎迹囵B(yǎng)創(chuàng)新

  師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?

  活動三:探究任意多邊形的內(nèi)角和公式。

  思考:

 。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

 。2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?

 。3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?

  學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。

  發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180的和,五邊形內(nèi)角和是3個180的和,六邊形內(nèi)角和是4個180的和,十邊形內(nèi)角和是8個180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。

  發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

  得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。

  (三)實際應(yīng)用,優(yōu)勢互補

  1、口答:

 。1)七邊形內(nèi)角和( )

 。2)九邊形內(nèi)角和( )

 。3)十邊形內(nèi)角和( )

  2、搶答:

 。1)一個多邊形的內(nèi)角和等于1260,它是幾邊形?

 。2)一個多邊形的內(nèi)角和是1440,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是( )。

  3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?

 。ㄋ模└爬ù鎯

  學(xué)生自己歸納總結(jié):

  1、多邊形內(nèi)角和公式

  2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題

  3、用數(shù)形結(jié)合的思想解決問題

 。ㄎ澹┳鳂I(yè):

  練習(xí)冊第93頁1、2、3

  八、教學(xué)反思:

  1、教的轉(zhuǎn)變

  本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。

  2、學(xué)的轉(zhuǎn)變

  學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。

  3、課堂氛圍的轉(zhuǎn)變

  整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

  初中數(shù)學(xué)教案 13

  一、教學(xué)目標

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點和難點

  重點:

  (1)二次根的意義;

 。2)二次根式中字母的取值范圍。

  難點:確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)提問

  1、什么叫平方根、算術(shù)平方根?

  2、說出下列各式的意義,并計算

 。ǘ┮胄抡n

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

 。1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

 。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?

  例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?

  解:略。

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負數(shù),式子有意義。

  例3當(dāng)字母取何值時,下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式。

 。2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時,是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的`條件:

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

 。3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。

 。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

  初中數(shù)學(xué)教案 14

  教學(xué)目標:

  1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動,體會統(tǒng)計在實際生活中的應(yīng)用。

  2、收集統(tǒng)計在生活中應(yīng)用的例子,整理收集數(shù)據(jù)的方法。

  3、在解決問題的過程中,整理所學(xué)習(xí)的統(tǒng)計圖,和統(tǒng)計量,能用自己的語言描述過各種統(tǒng)計圖的特點,掌握整理收集數(shù)據(jù)的方法。

  教學(xué)過程:

  一、課前預(yù)習(xí),出示預(yù)習(xí)提綱:

  1、我們學(xué)習(xí)了哪幾種統(tǒng)計圖?

  2、這幾種統(tǒng)計圖各有什么特點?

  3、概率的知識有哪些?

  二、展示與交流

  (一)提出問題

  1、(出示問題情境)我們班要和希望小學(xué)的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)

  2、師:先獨立列出幾個你想調(diào)查的.問題。(寫在練習(xí)本上)

  3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)

  4、接著全班匯報交流(師羅列在黑板上)

  師:大家想調(diào)查這么多的問題,現(xiàn)在我們班選擇其中有價值又能實施的問題進行調(diào)查。(師根據(jù)生的回答進行歸納、整理)

  (二)收集數(shù)據(jù)和整理數(shù)據(jù)

  1、師:調(diào)查這幾個問題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的方法。

  2、師:開展實際調(diào)查的話,如何進行調(diào)查比較有效?在調(diào)查的時候,大家需要注意什么?

  (三)開展調(diào)查

  1、針對學(xué)生提出的某個問題,先組織小組有效的開展收集和整理數(shù)據(jù)的活動,然后把數(shù)據(jù)記錄下來,并進行整理。

  2、師:誰來說一說你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報)

  3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書)

  4、師:分析上面的數(shù)據(jù),你能得到哪些信息?

  5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計圖比較好呢?

  6、師:根據(jù)這些信息,你還能提出什么數(shù)學(xué)問題?

  (四)回顧統(tǒng)計活動

  1、師:在剛才的統(tǒng)計活動,我們都做了些什么?你能按順序說一說嗎?

  師板書:提出問題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。

  2、收集在生活中應(yīng)用統(tǒng)計的例子,并說說這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)

  指名同學(xué)匯報,其他同學(xué)注意聽,并指出這個同學(xué)舉的例子中你可以獲得什么信息?

  3、結(jié)合生活中的例子說說收集數(shù)據(jù)有哪些方法?

  (1)先讓學(xué)生在小組內(nèi)交流,引導(dǎo)學(xué)生結(jié)合例子(充分利用第2題中收集來

  的實例)來說說自己的方法。

  (2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問他人、調(diào)查實驗等。

  4、師:同學(xué)們,我們已經(jīng)對統(tǒng)計表和統(tǒng)計圖進行了系統(tǒng)的學(xué)習(xí),回憶一下我們已經(jīng)學(xué)過了哪些統(tǒng)計圖,對這些統(tǒng)計圖,你已經(jīng)知道了哪些知識?

  初中數(shù)學(xué)教案 15

  教材分析

  立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學(xué)習(xí)內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學(xué)生進一步理解立體圖形起著至關(guān)重要的作用。立體圖形的翻折是從學(xué)生生活周圍熟悉的物體入手,使學(xué)生進一步認識立體圖形于平面圖形的關(guān)系;不僅要讓學(xué)生了解幾何體可由平面圖形折疊而成,更重要的是讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學(xué)生了解研究立體圖形的方法。

  教學(xué)重點

  了解平面圖形于折疊后的立體圖形之間的關(guān)系,找到變化過程中的不變量。

  教學(xué)難點

  轉(zhuǎn)化思想的運用及發(fā)散思維的培養(yǎng)。

  學(xué)生分析

  學(xué)生在前面已經(jīng)對一些簡單幾何體有了一定的認識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習(xí)慣。學(xué)生間相互評價、相互提問的互動的.氣氛較濃。

  設(shè)計理念

  根據(jù)教育課程改革的具體目標,結(jié)合“注重開放與生成,構(gòu)建充滿生命活力的課堂教學(xué)運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,實施開放式教學(xué),讓學(xué)生主動參與學(xué)習(xí)活動,并引導(dǎo)學(xué)生在課堂活動中感悟知識的生成、發(fā)展與變化。

  教學(xué)目標

  1、使學(xué)生掌握翻折問題的解題方法,并會初步應(yīng)用。

  2、培養(yǎng)學(xué)生的動手實踐能力。在實踐過程中,使學(xué)生提高對立體圖形的分析能力,并在設(shè)疑的同時培養(yǎng)學(xué)生的發(fā)散思維。

  3、通過平面圖形與折疊后的立體圖形的對比,向?qū)W生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學(xué)生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉(zhuǎn)化思想。

  教學(xué)流程

  一、創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入課題。

  1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題

 。1)AB與EF所在直線平行

 。2)AB與CD所在直線異面

 。3)MN與EF所在直線成60度

  (4)MN與CD所在直線互相垂直其中正確命題的序號是

  2、引入課題----翻折

  二、學(xué)生通過直觀感知、操作確認等實踐活動,加強對圖形的認識和感受(引導(dǎo)學(xué)生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。

  1、給學(xué)生一個展示自我的空間和舞臺,讓學(xué)生自己講解。教師根據(jù)學(xué)生的講解進一步提出問題。

 。1)線段AE與EF的夾角為什么不是60度呢?

 。2)AE與FG所成角呢?

 。3)AE與GC所成角呢?

  (4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經(jīng)過各面呢?

  (通過對發(fā)散問題的提出培養(yǎng)學(xué)生的培養(yǎng)精神及轉(zhuǎn)化的教學(xué)思想方法,讓學(xué)生體會折疊圖與展開圖的不同應(yīng)用。)

  2、讓學(xué)生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。

 。1)E、F分別處于G1G2、G2G3的什么位置?

 。2)選擇哪種擺放方式更利于求解體積呢?

 。3)如何求G點到面PEF的距離呢?

 。4)PG與面PEF所成角呢?

 。5)面GEF與面PEF所成角呢?

 。▽W(xué)生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學(xué)生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)

  3、演示MN的運動過程,讓學(xué)生觀察分析解題過程強調(diào)證PN垂直AB的困難性。與學(xué)生共同品位解出這道2002高考題的喜悅的同時,引導(dǎo)學(xué)生用上題的思路能否更快捷地解出此題呢?

 。▽W(xué)生大膽想象,并通過模型制作確認想象結(jié)果的正確性,從而開辟一條簡捷的翻折思想解題思路。)

  三、小結(jié)

  1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。

  2、尋找立體圖形中的不變量到平面圖形中求解是關(guān)鍵。

  3、注意培養(yǎng)轉(zhuǎn)化思想和發(fā)散思維。

 。ㄍㄟ^提問方式引導(dǎo)學(xué)生小結(jié)本節(jié)主要知識及學(xué)習(xí)活動,養(yǎng)成學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,發(fā)散自我評價的作用,培養(yǎng)學(xué)生的語言表達能力。)

  四、課外活動

  1、完成課上未解決的問題。

  2、對與1題折成正三棱柱結(jié)果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?

 。ㄍㄟ^課外活動學(xué)習(xí)本節(jié)知識內(nèi)容,培養(yǎng)學(xué)生的發(fā)散思維。)

  課后反思

  本課設(shè)計中,有梯度性的先安排三個小題,讓學(xué)生經(jīng)歷先動手、思考、預(yù)習(xí)這一學(xué)習(xí)過程,然后在課堂上給學(xué)生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學(xué)生找到解決方法。歸納總結(jié)解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學(xué)的過程中,注重引導(dǎo)學(xué)生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學(xué)生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學(xué)精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結(jié)合起來,將學(xué)生自主學(xué)習(xí)與創(chuàng)新意識的培養(yǎng)落到實處。

【初中數(shù)學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)教案02-21

初中數(shù)學(xué)教案[經(jīng)典]02-21

人教版初中數(shù)學(xué)教案07-17

初中數(shù)學(xué)教案模板11-02

初中數(shù)學(xué)教案最新09-05

角初中數(shù)學(xué)教案12-30

初中數(shù)學(xué)教案【熱門】11-20

【精】初中數(shù)學(xué)教案11-21

【熱】初中數(shù)學(xué)教案11-15

初中數(shù)學(xué)教案【精】11-19