亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數(shù)學(xué)教案設(shè)計(jì)

時(shí)間:2023-08-01 14:42:23 初中數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)教案設(shè)計(jì)(20篇)

  作為一位兢兢業(yè)業(yè)的人民教師,編寫教案是必不可少的,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那要怎么寫好教案呢?下面是小編幫大家整理的初中數(shù)學(xué)教案設(shè)計(jì),希望能夠幫助到大家。

初中數(shù)學(xué)教案設(shè)計(jì)(20篇)

  初中數(shù)學(xué)教案設(shè)計(jì)1

  一、內(nèi)容和內(nèi)容解析

 。ㄒ唬﹥(nèi)容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡(jiǎn)單不等式的解集.

 。ǘ﹥(nèi)容解析

  現(xiàn)實(shí)生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實(shí)際出發(fā)導(dǎo)入常見行程問(wèn)題的不等關(guān)系,使學(xué)生充分認(rèn)識(shí)到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過(guò)對(duì)實(shí)例的進(jìn)一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個(gè)概念.前面學(xué)過(guò)方程、方程的解、解方程的概念.通過(guò)類比教學(xué)、不等式、不等式的解、解不等式幾個(gè)概念不難理解.但是對(duì)于初學(xué)者而言,不等式的解集的理解就有一定的難度.因此教材又進(jìn)行數(shù)形結(jié)合,用數(shù)軸來(lái)表示不等式的解集,這樣直觀形象的表示不等式的解集,對(duì)理解不等式的解集有很大的幫助.基于以上分析,可以確定本節(jié)課的教學(xué)重點(diǎn)是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.

  二、目標(biāo)和目標(biāo)解析

 。ㄒ唬┙虒W(xué)目標(biāo)

  1.理解不等式的概念

  2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系

  3.了解解不等式的概念

  4.用數(shù)軸來(lái)表示簡(jiǎn)單不等式的解集

  (二)目標(biāo)解析

  1.達(dá)成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式.

  2.達(dá)成目標(biāo)2的標(biāo)志是:能理解不等式的解是解集中的某一個(gè)元素,而解集是所有解組成的一個(gè)集合.

  3.達(dá)成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個(gè)過(guò)程.

  4、達(dá)成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個(gè)重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具.操作時(shí),要掌握好“兩定”:一是定界點(diǎn),一般在數(shù)軸上只標(biāo)出原點(diǎn)和界點(diǎn)即可,邊界點(diǎn)含于解集中用實(shí)心圓點(diǎn),或者用空心圓點(diǎn);二是定方向,小于向左,大于向右.

  三、教學(xué)問(wèn)題診斷分析

  本節(jié)課實(shí)質(zhì)是一節(jié)概念課,對(duì)于不等式、不等式的解以及解不等式可通過(guò)類比方程、方程的解、解方程類比教學(xué),學(xué)生不難理解,但是對(duì)不等式的解集的理解就有一定的難度.

  因此,本節(jié)課的教學(xué)難點(diǎn)是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.

  四、教學(xué)支持條件分析

  利用多媒體直觀演示課前引入問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣.

  五、教學(xué)過(guò)程設(shè)計(jì)

 。ㄒ唬﹦(dòng)畫演示情景激趣多媒體演示:兩個(gè)體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個(gè)大人上去,蹺蹺板發(fā)生了傾斜,游戲無(wú)法繼續(xù)進(jìn)行下去了,這是什么原因呢?設(shè)計(jì)意圖:通過(guò)實(shí)例創(chuàng)設(shè)情境,從“等”過(guò)渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣.

 。ǘ┝⒆銓(shí)際引出新知

  問(wèn)題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過(guò)a地,車速應(yīng)滿足什么條件?

  小組討論,合作交流,然后小組反饋交流結(jié)果.最后,老師將小組反饋意見進(jìn)行整理(學(xué)生沒(méi)有討論出來(lái)的思路老師進(jìn)行補(bǔ)充)

  1.從時(shí)間方面慮:

  2.從行程方面:<>50 3.從速度方面考慮:x>50÷

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生合作、交流的意識(shí)習(xí)慣,使他們積極參與問(wèn)題的討論,并敢于發(fā)表自己的見解.老師對(duì)問(wèn)題解決方法的梳理與補(bǔ)充,發(fā)散學(xué)生思維,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  (三)緊扣問(wèn)題概念辨析

  1.不等式

  設(shè)問(wèn)1:什么是不等式?

  設(shè)問(wèn)2:能否舉例說(shuō)明?由學(xué)生自學(xué),老師可作適當(dāng)補(bǔ)充.比如:是不等式.

  2.不等式的解

  設(shè)問(wèn)1:什么是不等式的解?設(shè)問(wèn)

  2:不等式的解是唯一的嗎?由學(xué)生自學(xué)再討論.

  老師點(diǎn)撥:由x>50÷得x>75說(shuō)明x任意取一個(gè)大于75的數(shù)都是不等式

  3.不等式的`解集

  設(shè)問(wèn)1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設(shè)問(wèn)

  2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學(xué)生自學(xué)后再小組合作交流.

  老師點(diǎn)撥:不等式的解是不等式解集中的一個(gè)元素,而不等式的解集是不等式所有解組成的一個(gè)集合.

  4.解不等式

  設(shè)問(wèn)1:什么是解不等式?由學(xué)生回答.

  老師強(qiáng)調(diào):解不等式是一個(gè)過(guò)程.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生的自學(xué)能力,進(jìn)一步培養(yǎng)學(xué)生合作交流的意識(shí).遵循學(xué)生的認(rèn)知規(guī)律,有意識(shí)、有計(jì)劃、有條理地設(shè)計(jì)一些問(wèn)題,可以讓學(xué)生始終處于積極的思維狀態(tài),不知不覺中接受了新知識(shí).老師再適當(dāng)點(diǎn)撥,加深理解.

 。ㄋ模⿺(shù)形結(jié)合,深化認(rèn)識(shí)

  問(wèn)題1:由上可知,x>75既是不等式的解集.那么在數(shù)軸上如何表示x>75呢?問(wèn)題

  2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準(zhǔn)確性.老師適當(dāng)補(bǔ)充:“≥”與“≤”的意義,并強(qiáng)調(diào)用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式.

  設(shè)計(jì)意圖:通過(guò)數(shù)軸的直觀讓學(xué)生對(duì)不等式的解集進(jìn)一步加深理解,滲透數(shù)形結(jié)合思想.

 。ㄎ澹w納小結(jié),反思

  提高教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答如下問(wèn)題

  1、什么是不等式?

 。嫉慕饧彩遣坏仁剑50

  2、什么是不等式的解?

  3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?

  4、用數(shù)軸表示不等式的解集要注意哪些方面?

  設(shè)計(jì)意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學(xué)習(xí)經(jīng)驗(yàn).

  (六)布置作業(yè),課外反饋

  教科書第119頁(yè)第1題,第120頁(yè)第2,3題.

  設(shè)計(jì)意圖:通過(guò)課后作業(yè),教師及時(shí)了解學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,以便對(duì)教學(xué)進(jìn)度和方法進(jìn)行適當(dāng)?shù)恼{(diào)整.

  六、目標(biāo)檢測(cè)設(shè)計(jì)1.填空

  下列式子中屬于不等式的有___________________________

 、賦 +7>

  ②②x≥ y + 2 = 0④ 5x + 7設(shè)計(jì)意圖:讓學(xué)生正確區(qū)分不等式、等式與代數(shù)式,進(jìn)一步鞏固不等式的概念.

  2.用不等式表示① a與5的和小于7 ② a的與b的3倍的和是非負(fù)數(shù)

 、壅叫蔚倪呴L(zhǎng)為xcm,它的周長(zhǎng)不超過(guò)160cm,求x滿足的條件設(shè)計(jì)意圖:培養(yǎng)學(xué)生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負(fù)數(shù)(正數(shù)或負(fù)數(shù))、不超過(guò)(不低于)”等等,正確選擇不等號(hào),又要注意實(shí)際問(wèn)題中的數(shù)量的實(shí)際意義.

  初中數(shù)學(xué)教案設(shè)計(jì)2

  一、教學(xué)案例的特點(diǎn)

  1、案例與論文的區(qū)別

  從文體和表述方式上看,論文是以說(shuō)理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說(shuō)明。也就是說(shuō),案例是講一個(gè)故事,是通過(guò)故事說(shuō)明道理。

  從寫作的思路和思維方式來(lái)看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。

  2、案例與教案、教學(xué)設(shè)計(jì)的區(qū)別

  教案和教學(xué)設(shè)計(jì)都是事先設(shè)想的教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教學(xué)措施的簡(jiǎn)要說(shuō)明;教學(xué)案例則是對(duì)已經(jīng)發(fā)生的教學(xué)過(guò)程的反映。一個(gè)寫在教之前,一個(gè)寫在教之后;一個(gè)是預(yù)期達(dá)到什么目標(biāo),一個(gè)是結(jié)果達(dá)到什么水平。教學(xué)設(shè)計(jì)不宜于交流,教學(xué)案例適宜于交流。

  3、案例與教學(xué)實(shí)錄的區(qū)別

  案例與教學(xué)實(shí)錄的體例比較接近,它們都是對(duì)教學(xué)情景的描述,但教學(xué)實(shí)錄是有聞必錄,而案例則是有所選擇的,教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷或理性思考)。

  4、教學(xué)案例的特點(diǎn)是

  ——真實(shí)性:案例必須是在課堂教學(xué)中真實(shí)發(fā)生的事件;

  ——典型性:必須是包括特殊情境和典型案例問(wèn)題的故事;

  ——濃縮性:必須多角度地呈現(xiàn)問(wèn)題,提供足夠的信息;

  ——啟發(fā)性:必須是經(jīng)過(guò)研究,能夠引起討論,提供分析和反思。

  二、數(shù)學(xué)案例的結(jié)構(gòu)要素

  從文章結(jié)構(gòu)上看,數(shù)學(xué)案例一般包含以下幾個(gè)基本的元素。

  (1)背景。案例需要向讀者交代故事發(fā)生的有關(guān)情況:時(shí)間、地點(diǎn)、人物、事情的起因等。如介紹一堂課,就有必要說(shuō)明這堂課是在什么背景情況下上的,是一所重點(diǎn)學(xué)校還是普通學(xué)校,是一個(gè)重點(diǎn)班級(jí)還是普通班級(jí),是有經(jīng)驗(yàn)的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過(guò)準(zhǔn)備的“公開課”還是平時(shí)的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說(shuō)明故事的發(fā)生是否有什么特別的原因或條件。

  (2)主題。案例要有一個(gè)主題:寫案例首先要考慮我這個(gè)案例想反映什么問(wèn)題,例如是想說(shuō)明怎樣轉(zhuǎn)變學(xué)困生,還是強(qiáng)調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學(xué)生的獨(dú)立學(xué)習(xí)情況,等等;蛘呤且粋(gè)什么樣的數(shù)學(xué)任務(wù)解決過(guò)程和方法,在課程標(biāo)準(zhǔn)中數(shù)學(xué)任務(wù)認(rèn)知水平的要求怎么樣,在課堂教學(xué)中數(shù)學(xué)任務(wù)認(rèn)知水平的發(fā)展怎么樣等等。動(dòng)筆前都要有一個(gè)比較明確的想法。比如學(xué)校開展研究性學(xué)習(xí)活動(dòng),不同的研究課題、研究小組、研究階段,會(huì)面臨不同的問(wèn)題、情境、經(jīng)歷,都有自己的獨(dú)特性。寫作時(shí)應(yīng)該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。

  (3)情節(jié)。有了主題,寫作時(shí)就不會(huì)有聞必錄,而要是對(duì)原始材料進(jìn)行篩選。首先需要教師對(duì)課堂教學(xué)中師生雙方(外顯的和內(nèi)隱的)活動(dòng)的清晰感知,然后是有針對(duì)性地向讀者交代特定的內(nèi)容,把關(guān)鍵性的細(xì)節(jié)寫清楚。比如介紹教師如何指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的方法,就要把學(xué)生怎么從“不會(huì)”到“會(huì)”的轉(zhuǎn)折過(guò)程,要把學(xué)習(xí)發(fā)生發(fā)展過(guò)程的細(xì)節(jié)寫清楚,要把教師觀察到的學(xué)生學(xué)習(xí)行為,學(xué)習(xí)行為反映的學(xué)生思想、情感、態(tài)度寫清楚,或者把小組合作學(xué)習(xí)的突出情況寫清楚,或者把個(gè)別學(xué)生獨(dú)立學(xué)習(xí)的典型行為寫清楚。不能把“任務(wù)”布置了一番,把“方法”介紹了一番,說(shuō)到“任務(wù)”的完成過(guò)程,說(shuō)到“掌握”的`程度就一筆帶過(guò)了。

  (4)結(jié)果。一般來(lái)說(shuō),教案和教學(xué)設(shè)計(jì)只有設(shè)想的措施而沒(méi)有實(shí)施的結(jié)果,教學(xué)實(shí)錄通常也只記錄教學(xué)的過(guò)程而不介紹教學(xué)的效果;而案例則不僅要說(shuō)明教學(xué)的思路、描述教學(xué)的過(guò)程,還要交代學(xué)生學(xué)習(xí)的結(jié)果,即這種教學(xué)措施的即時(shí)效果,包括學(xué)生的反映和教師的感受等。讀者知道了結(jié)果,將有助于加深對(duì)整個(gè)過(guò)程的內(nèi)涵的了解。

  (5)反思。對(duì)于案例所反映的主題和內(nèi)容,包括教育教學(xué)指導(dǎo)思想、過(guò)程、結(jié)果,對(duì)其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎(chǔ)上的議論,可以進(jìn)一步揭示事件的意義和價(jià)值。比如同樣是一個(gè)學(xué)困生轉(zhuǎn)化的事例,我們可以從社會(huì)學(xué)、教育學(xué)、心理學(xué)、學(xué)習(xí)理論等不同的理論角度切入,揭示成功的原因和科學(xué)的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。

  三、初中數(shù)學(xué)教學(xué)案例主題的選擇

  新課程理念下的初中數(shù)學(xué)教學(xué)案例,可從以下六方面選擇主題:

  (1)體現(xiàn)讓學(xué)生動(dòng)手實(shí)踐、自主探究、合作交流的教學(xué)方式;

  (2)體現(xiàn)教師幫助學(xué)生在自主探究、合作交流的過(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)和技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn);

  (3)體現(xiàn)讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程,采用“問(wèn)題情境——建立模型——解釋、應(yīng)用與拓展”的模式教學(xué)的成功經(jīng)驗(yàn);

  (4)體現(xiàn)數(shù)學(xué)與信息技術(shù)整合的教學(xué)方法;

  (5)體現(xiàn)教師在教學(xué)過(guò)程中的組織者、引導(dǎo)者與合作者的作用;

  (6)體現(xiàn)教學(xué)中對(duì)學(xué)生情感、態(tài)度的關(guān)注和評(píng)價(jià),以及怎樣幫助不同的人在數(shù)學(xué)上獲得不同的發(fā)展,等等。

  初中數(shù)學(xué)教案設(shè)計(jì)3

  教學(xué)目標(biāo)

  1、使學(xué)生能把簡(jiǎn)單的與數(shù)量有關(guān)的詞語(yǔ)用代數(shù)式表示出來(lái);

  2、初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):把實(shí)際問(wèn)題中的數(shù)量關(guān)系列成代數(shù)式?

  難點(diǎn):正確理解題意,從中找出數(shù)量關(guān)系里的運(yùn)算順序并能準(zhǔn)確地寫成代數(shù)式???

  教學(xué)手段

  現(xiàn)代課堂教學(xué)手段

  教學(xué)方法

  啟發(fā)式教學(xué)

  教學(xué)過(guò)程

  (一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1、用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;(-7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)

  2、在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問(wèn)題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語(yǔ)言)列成代數(shù)式?本節(jié)課我們就來(lái)一起學(xué)習(xí)這個(gè)問(wèn)題?

  (二)、講授新課

  例1用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來(lái),才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的與乙數(shù)的的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來(lái),然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b);(2)a-b;(3)a2+b2;

  (4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  此時(shí),教師指出:a與b的和,以及b與a的'和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說(shuō),用文字語(yǔ)言敘述的句子里應(yīng)特別注意其運(yùn)算順序?

  例3用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時(shí),可提出以下問(wèn)題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n;(2)5m+2?

  (這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)?

  例4設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:

  (1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的;

  (3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的的和?

  分析:?jiǎn)l(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

  (通過(guò)本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力?)

  例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個(gè)座位?

  分析本題時(shí),可提出如下問(wèn)題:

  (1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?

  (2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?

  (3)通過(guò)上述問(wèn)題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個(gè);(2)(m)m個(gè)?

  (三)、課堂練習(xí)

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

  (四)、師生共同小結(jié)

  首先,請(qǐng)學(xué)生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:對(duì)于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變?cè)}敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;

  (3)把用日常生活語(yǔ)言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握

  練習(xí)設(shè)計(jì)

  1、用代數(shù)式表示:

  (1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?

  2、已知一個(gè)長(zhǎng)方形的周長(zhǎng)是24厘米,一邊是a厘米,

  求:(1)這個(gè)長(zhǎng)方形另一邊的長(zhǎng);(2)這個(gè)長(zhǎng)方形的面積?

  板書設(shè)計(jì)

  §3.2代數(shù)式

  (一)知識(shí)回顧(三)例題解析(五)課堂小結(jié)

  例1、例2

  (二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計(jì)

  教學(xué)后記

  由于列代數(shù)式的內(nèi)容既是本章的重點(diǎn),又是本書的重點(diǎn),同時(shí)也是學(xué)生學(xué)習(xí)過(guò)程中的一個(gè)難點(diǎn),故在設(shè)計(jì)其教學(xué)過(guò)程時(shí),注意所選例題及練習(xí)題由易到難,循序漸進(jìn),使學(xué)生逐步地掌握好這一內(nèi)容,為今后的學(xué)習(xí)打下一個(gè)良好的基礎(chǔ)?同時(shí),也使學(xué)生的抽象思維能力得到初的培養(yǎng)。

  初中數(shù)學(xué)教案設(shè)計(jì)4

  教學(xué)目標(biāo)

  1.經(jīng)歷實(shí)踐、探索的過(guò)程,了解平行投影的含義,能夠確定物體在太陽(yáng)光下的影子。

  2.會(huì)用觀察、想像,了解不同時(shí)刻物體在太陽(yáng)光下形成的影子的大小和方向是不同的。

  3. 了解平行投影與物體三種視圖之間的關(guān)系。

  教學(xué)重點(diǎn) 探討物體在太陽(yáng)光下所形成的'影子的大小、形狀、 方向等。

  教學(xué)難點(diǎn) 平行投影與物體三種 視圖之間的關(guān)系的理解。

  教學(xué)方法 觀察實(shí)踐法

  教學(xué)后記

  教學(xué)內(nèi)容及過(guò)程備注

  一、創(chuàng)設(shè)情境、實(shí)例導(dǎo)入

  引言:影子是我們司空見慣的,但你知道其中的奧 妙嗎?

  概念:物體在光線的照射下,會(huì)在地面或墻壁上留下它的影子,這就是投影現(xiàn)象。

  二、操作感知、建立表象

  實(shí)踐:取若干長(zhǎng)短 不等的小棒及三角形、矩形紙片,觀察它們?cè)谔?yáng)光下的影子。

  提問(wèn):如果改變小棒或紙片 的位置和方向,它們的影子發(fā)生了什么變化?

  概念:太陽(yáng)光線可以看成平行光線,像這樣的光線所形成的投影稱為平行投影。

  議一議

  提出問(wèn)題:1.在三個(gè)不同時(shí)刻,同一棵樹的影子長(zhǎng)度不同,請(qǐng)將它們按拍攝的先后順序進(jìn)行排列,并說(shuō)明你的理由 。

  2.在同一時(shí)刻,大樹和小樹的影子與它們的高度之間有什么關(guān)系 ?與同伴交流。

  學(xué)生觀察、交流。

  做一做

  某校墻邊有甲、乙兩根木桿。

 。1)某一時(shí)刻甲木桿在陽(yáng)光下的影子如圖4-12所示,你能畫出此時(shí)乙木桿的影子嗎?(用線段表示影子)

  在圖4-12中,當(dāng)乙木桿移動(dòng)到什么位置時(shí),其影子剛好不落在墻上?

 。3)在你所畫的圖形中有相似三角形嗎?為什么?

  學(xué)生畫圖、實(shí)驗(yàn)、觀察、探索。

  議一議

  小亮認(rèn)為,物 體的主視圖實(shí)際上就是說(shuō)物體在某一平行光線下的投影(如圖4-13),左視圖和俯視圖也是如此, 你同意這種看 法嗎?先想一想,再 與同伴交流。

  學(xué)生觀察、理解、交流。

  三、隨堂練習(xí)

  課本隨堂練習(xí)

  學(xué)生觀察、畫圖、合作交流。。

  四、課堂總結(jié)

  本節(jié)課通過(guò)各種實(shí)踐活動(dòng),促進(jìn)大家對(duì)內(nèi)容的理解,本課內(nèi)容,要體會(huì)物體在太陽(yáng)光下形成的不同影子,在操作中觀察不同時(shí)刻影子的 方 向和大小變化特征。

  五、布置作業(yè)

  課本習(xí)題4.3 1、2、3 試一試

  初中數(shù)學(xué)教案設(shè)計(jì)5

  提公因式法(二)

  總體說(shuō)明

  本節(jié)是因式分解的第2小節(jié),占兩個(gè)課時(shí),這是第二課時(shí),它主要讓學(xué)生經(jīng)歷提取公因式從簡(jiǎn)單到復(fù)雜的過(guò)程,進(jìn)一步培養(yǎng)學(xué)生的觀察能力,體會(huì)數(shù)學(xué)的類比推理能力,讓學(xué)生進(jìn)一步了解分解因式與整式的乘法運(yùn)算之間的互逆關(guān)系.

  一、學(xué)生知識(shí)狀況分析

  學(xué)生的技能基礎(chǔ):上一節(jié)課,學(xué)生學(xué)習(xí)了提取單項(xiàng)式公因式的基本方法,這為今天的深入學(xué)習(xí)提供了必要的基礎(chǔ).

  學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):學(xué)生對(duì)于本節(jié)課采用的觀察、對(duì)比、討論等方法非常熟悉,他們有較好的活動(dòng)經(jīng)驗(yàn).

  二、教學(xué) 任務(wù)分析

  學(xué)生在初步感知提取公 因式的魅力之后,并對(duì)數(shù)學(xué)的逆向思維能力和類比思想有了簡(jiǎn)單的認(rèn)識(shí),本課時(shí)讓學(xué)生體會(huì)如何將這些簡(jiǎn)單的知識(shí)和能力進(jìn)一步升華,使學(xué)生逐步從提取的單項(xiàng)式公因式過(guò)渡到提取的多項(xiàng)式公因式,因此,本課時(shí)的教學(xué)目標(biāo)是:

  知識(shí)與技能:

 。1)使學(xué)生經(jīng)歷從簡(jiǎn)單到復(fù)雜的螺旋式上升的認(rèn)識(shí)過(guò)程.

  (2)會(huì)用提取公因式法進(jìn)行因式分解.

  數(shù)學(xué)能力:

 。1)培養(yǎng)學(xué)生的直 覺思維,滲透化歸的思想方法,培養(yǎng)學(xué)生的觀察能力.

  (2)從提取的公因式是一個(gè)單項(xiàng)式過(guò)渡到提取的公因式是多項(xiàng)式,進(jìn)一步發(fā)展學(xué)生的類比思想.

  情感與態(tài)度:

  通過(guò)觀察能合理地進(jìn)行分解因式的推導(dǎo),并能清晰地闡述自己的觀點(diǎn).

  三、教學(xué)過(guò)程分 析

  本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):練一練——想一想——做一做——試一試——議一議——反饋練習(xí)——學(xué)生反思.

  第一環(huán)節(jié) 練一練

  活動(dòng)內(nèi)容:把下列各式因式分解:

  (1)am+an (2)a2b–5ab

 。3)m2n+mn2–mn (4)–2x2y+4xy2–2xy

  活動(dòng)目的:回顧上一節(jié)課提取公因式的基本方法與步驟,為學(xué)生能從容地把提取的公因式從單項(xiàng)式過(guò)渡到多項(xiàng)式提供必要的基礎(chǔ).

  注意事項(xiàng):切忌采用死記硬背的方法讓學(xué)生背誦提取公因式的基本方法與步驟,最好用例題的形式讓學(xué)生回憶起提取公因式的方法與步驟,讓學(xué)生真正理解是第一位的.

  第二環(huán)節(jié) 想一想

  活動(dòng)內(nèi)容:因式分解:a(x–3)+2 b(x–3)

  活動(dòng)目的:引導(dǎo)學(xué)生通過(guò)類比將提取單項(xiàng)式公因式的方法與步驟推廣應(yīng)用于提取的多項(xiàng)式公因式.

  由于題中很顯明地表明 ,多項(xiàng)式中的兩項(xiàng)都存在著(x–3),通過(guò)觀察,學(xué)生較容易找到公因式是(x–3),并能順利地進(jìn)行因式分解.

  第三環(huán)節(jié) 做一做

  活動(dòng)內(nèi)容:在下列各式等號(hào)右邊的括號(hào)前插入“+”或“–”號(hào),使等式成立:

 。1)2–a= (a–2)

 。2)y–x= (x–y)

  (3)b+a= (a+b)

 。4)(b–a)2= (a–b)2

 。5)–m–n= (m+n)

 。6)–s2+t2= (s2–t2)

  活動(dòng)目的:培養(yǎng)學(xué)生的觀察能力,為解決學(xué)生在因式分解中感到比較棘手的符號(hào)問(wèn)題提供知識(shí)準(zhǔn)備.

  注意事項(xiàng):(1)首先注意分清前后兩個(gè)多項(xiàng)式的底數(shù)部分是相等關(guān)系還是互為相反數(shù)的關(guān)系;

 。2)當(dāng)前后兩個(gè)多項(xiàng)式的底數(shù)相等時(shí),則只要在第二個(gè)式子前添上“+”;

 。3)當(dāng)前后兩個(gè)多項(xiàng)式的底數(shù)部分是互為相反 數(shù)時(shí),如果指數(shù)是奇數(shù),則在 第二個(gè)式子前添上“–”;如果指數(shù)是偶數(shù),則在第二個(gè)式子前添上“+”.

  第四環(huán)節(jié) 試一試

  活動(dòng)內(nèi)容:

  將下列各式因式分解:

 。1)a(x–y)+b(y–x) (2)3(m–n)3–6(n–m)2

  活動(dòng)目的:進(jìn)一步引導(dǎo)學(xué)生采用類比的方法由提取的`公因式是單項(xiàng)式類比出提取的公因式是多項(xiàng)式的方法與步驟.

 。1)觀察多項(xiàng)式中括號(hào)內(nèi)不同符號(hào)的多項(xiàng)式部分,并把它們轉(zhuǎn)換成符號(hào)相同的多項(xiàng)式;

 。2)再把相同的多項(xiàng)式作為公因式提取出來(lái).

  第五環(huán)節(jié) 反饋練習(xí)

  活動(dòng)內(nèi)容:

  1、 填一填:

 。1)3+a= (a+3)

 。2)1–x= (x–1)

 。3)(m–n)2= (n–m)2

 。4)–m2+2n2= (m2–2n2)

  2、把下 列各式因式分解:

 。1)x(a+b)+y(a+b) (2)3 a(x–y)–(x–y)

  (3)6(p+q)2–12(q+p) (4)a(m–2)+b(2–m)

 。5)2(y–x)2+3(x–y) (6)mn(m–n)–m(n–m)2

  活動(dòng)目的:通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)符號(hào)的轉(zhuǎn)換的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.

  注意事項(xiàng):由于新教材刪除了添括號(hào)一節(jié)的教學(xué),學(xué)生對(duì)于第1題第(4)小題的解答有一定的困難,因而,需要認(rèn)真比較這兩個(gè)多項(xiàng)式符號(hào)上的異同,確定它們是互為相反數(shù)還是相等關(guān)系.

  第六環(huán)節(jié) 議一議

  活動(dòng)內(nèi)容:把(a+b-c)(a-b+c)+(b-a+c)(b-a-c)分解因式.

  活動(dòng)目的:通過(guò)學(xué)生的討論,當(dāng)提取的公因式由兩項(xiàng)過(guò)渡到三項(xiàng)時(shí),應(yīng)該采用何種對(duì)策,從而進(jìn)一步提高學(xué)生的觀察能力與思維能力.

  注意事項(xiàng):通過(guò)討論,學(xué)生逐步意識(shí)到如果采用提取公因式的方法,必須先把所有括號(hào)內(nèi)的多項(xiàng)式中字母a前面的符號(hào)都化為正號(hào),再進(jìn)行觀察比較可以找出公因式(a-b+c).

  第七環(huán)節(jié) 學(xué)生反思

  活動(dòng)內(nèi)容:從今天的課程中,你學(xué)到了哪些知識(shí)? 掌握了哪些方法?

  活動(dòng)目的:通過(guò)學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)如果提取的公因式是多項(xiàng)式應(yīng)該采取的方法,進(jìn)一步清楚地了解提公因式法與單項(xiàng)式乘多項(xiàng)式的互逆關(guān)系,加深對(duì)類比數(shù)學(xué)思想的理解.

  注意事項(xiàng):學(xué)生經(jīng)歷了一個(gè)從簡(jiǎn)單到復(fù)雜、提取的公因式從單項(xiàng)式——兩項(xiàng)式——三項(xiàng)式的螺旋式上升的認(rèn)識(shí)過(guò)程,對(duì)確定公 因式的方法及提公因式法的步驟有了進(jìn)一步的理解,更清楚地了解提公因式法與單項(xiàng)式乘多項(xiàng)式的互逆關(guān)系,了解類比等數(shù)學(xué)思想方法.

  鞏固練習(xí):課本第52頁(yè)習(xí)題2.3第1,2題.

  思考題:課本第53頁(yè)習(xí)題2.3第3題(給學(xué)有余力的同學(xué)做).

  四、教學(xué)反思

  對(duì)學(xué)生數(shù)學(xué)能力及數(shù)學(xué)思想方法的培養(yǎng)在初中數(shù)學(xué)教材中盡管沒(méi)有專門章節(jié)進(jìn)行訓(xùn)練,但始終滲透在整個(gè)初中數(shù)學(xué)的教學(xué)過(guò)程中.由于一些數(shù)學(xué)問(wèn)題的解決思路常常是相通的,類比思想可以教會(huì)學(xué)生由此及彼,靈活應(yīng)用所學(xué)知識(shí),它是初中數(shù)學(xué)一個(gè)重要的數(shù)學(xué)思想.

  運(yùn)用類比的數(shù)學(xué)方法,在新概念提出、新知識(shí)點(diǎn)的講授過(guò)程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提取公因式法時(shí),由整式的 乘法的逆運(yùn)算到提取公因式的概念,由提取的公因式是單項(xiàng)式到提取的公因式是多項(xiàng)式時(shí)的分解方法,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,沒(méi)有斧鑿的痕跡.

  教學(xué)中那種只重視講授表層知識(shí),而不注重滲透數(shù)學(xué)思想、方法的教學(xué),是不完備的教學(xué),它不利于學(xué)生對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略表層知識(shí)的教學(xué),就會(huì)使教學(xué)流于形式,成為無(wú)源之水,無(wú)本之木,學(xué)生也難以領(lǐng)略深層知識(shí)的真諦.因此數(shù)學(xué)思想的教學(xué)應(yīng)與整個(gè)表層知識(shí)的講授融為一體.

  初中數(shù)學(xué)教案設(shè)計(jì)6

  教學(xué)目標(biāo)

  1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;

  2.了解代數(shù)式的概念,使學(xué)生能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;

  3.通過(guò)對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;

  4.通過(guò)本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法。

  教學(xué)建議

  1. 知識(shí)結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過(guò)的字母表示的兩種實(shí)例,一是運(yùn)算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進(jìn)而引出代數(shù)式的概念。

  2.教學(xué)重點(diǎn)分析:教科書,介紹了小學(xué)用字母表示數(shù)的實(shí)例,一個(gè)是運(yùn)算律,一個(gè)是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡(jiǎn)明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進(jìn)步,是代數(shù)的顯著特點(diǎn)。運(yùn)用算術(shù)的方法解決問(wèn)題,是小學(xué)學(xué)生的思維方法 ,現(xiàn)在,從具體的數(shù)過(guò)渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識(shí)上是一個(gè)質(zhì)的飛躍。對(duì)代數(shù)式的概念課文沒(méi)有直接給出,而是用實(shí)例形象地說(shuō)明了代數(shù)式的概念。對(duì)代數(shù)式的概念可以從三個(gè)方面去理解:

  (1)從具體的數(shù)到用字母表示數(shù),是抽象思維的`開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡(jiǎn)明、普遍的優(yōu)越性.

  (2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時(shí)出現(xiàn),單獨(dú)的一個(gè)數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.

  等都不是代數(shù)式.

  3.教學(xué)難點(diǎn)分析:能正確說(shuō)出一個(gè)代數(shù)式的數(shù)量關(guān)系,即用語(yǔ)言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序。用語(yǔ)言表達(dá)代數(shù)式的意義,具體說(shuō)法沒(méi)有統(tǒng)一規(guī)定,以簡(jiǎn)明而不引起誤會(huì)為出發(fā)點(diǎn)。

  如:說(shuō)出代數(shù)式7(a-3)的意義。

  分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運(yùn)算是積,應(yīng)把a(bǔ)-3作為一個(gè)整體。所以,7(a-3)的意義是7與(a-3)的積。

  初中數(shù)學(xué)教案設(shè)計(jì)7

  一、教材的地位與作用

  《二元一次方程》是九年義務(wù)教育人教版教材七年級(jí)下冊(cè)第四章《二元一次方程組》的第一節(jié)。在此之前學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程,這為本節(jié)的學(xué)習(xí)起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學(xué)中,起著承上啟下的地位。

  二、教學(xué)目標(biāo)

  (一)知識(shí)與技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

  (二)數(shù)學(xué)思考:

  體會(huì)學(xué)習(xí)二元一次方程的必要性,學(xué)會(huì)獨(dú)立思考,體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想和主元思想。

  (三)問(wèn)題解決:

  初步學(xué)會(huì)利用二元一次方程來(lái)解決實(shí)際問(wèn)題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

  (四)情感態(tài)度:

  培養(yǎng)學(xué)生發(fā)現(xiàn)意識(shí)和能力,使其具有強(qiáng)烈的好奇心和求知欲。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):二元一次方程及其解的概念。

  教學(xué)難點(diǎn):二元一次方程的概念里“含未知數(shù)的項(xiàng)的次數(shù)”的理解;把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

  四、教法與學(xué)法分析

  教法:情境教學(xué)法、比較教學(xué)法、閱讀教學(xué)法。

  學(xué)法:閱讀、比較、探究的學(xué)習(xí)方式。

  五、教學(xué)過(guò)程

  1.創(chuàng)設(shè)情境,引入新課

  從學(xué)生熟悉的姚明受傷事件引入。

  師:火箭隊(duì)最近取得了20連勝,姚明參加了前面的12場(chǎng)比賽,是球隊(duì)的頂梁柱。

 。1)連勝的第12場(chǎng),火箭對(duì)公牛,在這場(chǎng)比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個(gè)兩分球?(本場(chǎng)比賽姚明沒(méi)投中三分球)師:能用方程解決嗎?列出來(lái)的方程是什么方程?

 。2)連勝的第1場(chǎng),火箭對(duì)勇士,在這場(chǎng)比賽中,姚明得了36分,你知道姚明投中了幾個(gè)兩分球,罰進(jìn)了幾個(gè)球嗎?(罰進(jìn)1球得1分,本場(chǎng)比賽姚明沒(méi)投中三分球)師:這個(gè)問(wèn)題能用一元一次方程解決嗎?,你能列出方程嗎?

  設(shè)姚明投進(jìn)了x個(gè)兩分球,罰進(jìn)了y個(gè)球,可列出方程。

 。3)在雄鹿隊(duì)與火箭隊(duì)的比賽中易建聯(lián)全場(chǎng)總共得了19分,其中罰球得了3分。你知道他分別投進(jìn)幾個(gè)兩分球、幾個(gè)三分球嗎?

  設(shè)易建聯(lián)投進(jìn)了x個(gè)兩分球,y個(gè)三分球,可列出方程。

  師:對(duì)于所列出來(lái)的三個(gè)方程,后面兩個(gè)你覺的是一元一次方程嗎?那這兩個(gè)方程有什么相同點(diǎn)嗎?你能給它們命一個(gè)名稱嗎?

  從而揭示課題。

 。ㄔO(shè)計(jì)意圖:第一個(gè)問(wèn)題主要是讓學(xué)生體會(huì)一元一次方程是解決實(shí)際問(wèn)題的數(shù)學(xué)模型,從而回顧一元一次方程的概念;第二、三問(wèn)題設(shè)置的主要目的是讓學(xué)生體會(huì)到當(dāng)實(shí)際問(wèn)題不能用一元一次方程來(lái)解決的時(shí)候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活,通過(guò)創(chuàng)設(shè)輕松的問(wèn)題情境,點(diǎn)燃學(xué)習(xí)新知識(shí)的“導(dǎo)火索”,引起學(xué)生的學(xué)習(xí)興趣,以“我要學(xué)”的主人翁姿態(tài)投入學(xué)習(xí),而且“會(huì)學(xué)”“樂(lè)學(xué)”。)

  2.探索交流,汲取新知

  概念思辨,歸納二元一次方程的特征

  師:那到底什么叫二元一次方程?(學(xué)生思考后回答)

  師:翻開書本,請(qǐng)同學(xué)們把這個(gè)概念劃起來(lái),想一想,你覺得和我們自己歸納出來(lái)的概念有什么區(qū)別嗎?(同學(xué)們思考后回答)

  師:根據(jù)概念,你覺得二元一次方程應(yīng)具備哪幾個(gè)特征?

  活動(dòng):你自己構(gòu)造一個(gè)二元一次方程。

  快速判斷:下列式子中哪些是二元一次方程?

 、賦2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

 。ㄔO(shè)計(jì)意圖:這一環(huán)節(jié)是本課設(shè)計(jì)的重點(diǎn),為加深學(xué)生對(duì)“含有未知數(shù)的項(xiàng)的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生對(duì)“項(xiàng)的次數(shù)”的思考,進(jìn)而完善學(xué)生對(duì)二元一次方程概念的理解,通過(guò)學(xué)生自己舉例子的活動(dòng)去把“項(xiàng)的次數(shù)”形象化。)

  二元一次方程解的概念

  師:前面列的兩個(gè)方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過(guò)方程2x+3y=16,你知道易建聯(lián)可能投中幾個(gè)兩分球,幾個(gè)三分球嗎?

  師:你是怎么考慮的?(讓學(xué)生說(shuō)說(shuō)他是如何得到x和y的值的,怎么證明自己的這對(duì)未知數(shù)的取值是對(duì)的)利用一個(gè)學(xué)生合理的解釋,引導(dǎo)學(xué)生類比一元一次方程的解的概念,讓學(xué)生歸納出二元一次方程的解的概念及其記法。(學(xué)生看書本上的記法)

  使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。(設(shè)計(jì)意圖:通過(guò)引導(dǎo)學(xué)生自主取值,猜x和y的值,從而更深刻的體會(huì)二元一次方程解的本質(zhì):使方程左右兩邊相等的一對(duì)未知數(shù)的取值。引導(dǎo)學(xué)生看書本,目的是讓學(xué)生在記法上體會(huì)“一對(duì)未知數(shù)的取值”的真正含義。)

  二元一次方程解的不唯一性

  對(duì)于2x+3y=16,你覺得這個(gè)方程還有其它的解嗎?你能試著寫幾個(gè)嗎?師:這些解你們是如何算出來(lái)的?

  (設(shè)計(jì)意圖:設(shè)計(jì)此環(huán)節(jié),目的有三個(gè):首先,是讓學(xué)生學(xué)會(huì)如何檢驗(yàn)一對(duì)未知數(shù)的取值是二元一次方程的解;其次是讓學(xué)生體會(huì)到二元一次方程的解的不唯一性;最后讓學(xué)生感受如何得到一個(gè)正確的解:只要取定一個(gè)未知數(shù)的取值,就可以代入方程算出另一個(gè)未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)當(dāng)x=2時(shí),求所對(duì)應(yīng)的y的值;

 。2)取一個(gè)你自己喜歡的數(shù)作為x的值,求所對(duì)應(yīng)的y的值;

  (3)用含x的代數(shù)式表示y;

 。4)用含y的代數(shù)式表示x;

 。5)當(dāng)x=負(fù)2,0時(shí),所對(duì)應(yīng)的y的值是多少?

 。6)寫出方程3x+2y=10的三個(gè)解.

  (設(shè)計(jì)意圖:此處設(shè)計(jì)主要是想讓學(xué)生形成求二元一次方程的解的一般方法,先讓學(xué)生展示他們的思維過(guò)程,再?gòu)乃麄兘庖辉淮畏匠痰闹貜?fù)步驟中提煉出用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后把它與原方程比較,把一個(gè)未知數(shù)的值代入哪一個(gè)方程計(jì)算會(huì)更簡(jiǎn)單,形成“正遷移”,引導(dǎo)學(xué)生體會(huì)“用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程,實(shí)質(zhì)是解一個(gè)關(guān)于y的一元一次方程,滲透數(shù)學(xué)的主元思想。以此突破本節(jié)課的難點(diǎn)。)

  大顯身手:

  課內(nèi)練習(xí)第2題

  梳理知識(shí),課堂升華

  本節(jié)課你有收獲嗎?能和大家說(shuō)說(shuō)你的感想嗎?3.作業(yè)布置

  必做題:書本作業(yè)題1、2、3、4。

  選做題:書本作業(yè)題5、6。

  設(shè)計(jì)說(shuō)明

  本節(jié)授課內(nèi)容屬于概念課教學(xué)。數(shù)學(xué)學(xué)科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學(xué)概念作為核心和邏輯起點(diǎn),形成系統(tǒng)的'數(shù)學(xué)知識(shí),所以數(shù)學(xué)概念是數(shù)學(xué)課程的核心。只有真正理解數(shù)學(xué)概念,才能理解數(shù)學(xué)。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關(guān)鍵如何理解它的概念,因此本節(jié)課采用先讓同學(xué)自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點(diǎn),進(jìn)而理解“含有未知數(shù)的項(xiàng)的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學(xué)過(guò)程中,采用的是讓學(xué)生體會(huì)“一個(gè)解、不止一個(gè)解、無(wú)數(shù)個(gè)解”的漸進(jìn)過(guò)程,感受到用一個(gè)二元一次方程并不能求出一對(duì)確定的未知數(shù)的取值,從而讓學(xué)生產(chǎn)生有后續(xù)學(xué)習(xí)的愿望。

  在講授用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的時(shí)候,采用“特殊、一般、特殊”的教學(xué)流程,以期突破難點(diǎn)。首先拋出問(wèn)題“這幾個(gè)解你是如何求的”,

  此時(shí)注意的聚焦點(diǎn)是二元一次方程;其次學(xué)生歸納先定一個(gè)未知數(shù)的取值,代入原方程求另一個(gè)未知數(shù)的值,此時(shí)注意的聚焦點(diǎn)是一元一次方程;然后教師引導(dǎo)回到二元一次方程,假如x是一個(gè)常數(shù),那么這個(gè)方程可以看成是一個(gè)關(guān)于誰(shuí)的一元一次方程,此時(shí)注意的聚焦點(diǎn)是原來(lái)的二元一次方程;最后代入求值,此時(shí)注意的聚焦點(diǎn)是等號(hào)右邊的那個(gè)算式,體會(huì)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”在求值過(guò)程中的簡(jiǎn)潔性,強(qiáng)化這種代數(shù)形式。另外,在引導(dǎo)學(xué)生推導(dǎo)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程中,滲透數(shù)學(xué)的主元思想和轉(zhuǎn)化思想。

  初中數(shù)學(xué)教案設(shè)計(jì)8

  【教學(xué)目標(biāo)】

  1進(jìn)一步認(rèn)識(shí)方程及其解的概念。

  2理解一元一次方程的概念,會(huì)根據(jù)簡(jiǎn)單數(shù)量關(guān)系列一元一次方程。 3體驗(yàn)用嘗試、檢驗(yàn)解一元一次方程的思想與方法。

  【教學(xué)重點(diǎn)】

  一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗(yàn)法”求解是本節(jié)教學(xué)的重點(diǎn)。

  【教學(xué)難點(diǎn)】

  用嘗試、檢驗(yàn)的方法解一元一次方程的過(guò)程比較復(fù)雜,是本節(jié)教學(xué)的難點(diǎn)。

  【學(xué)習(xí)準(zhǔn)備】

  1.下面哪些式子是方程?

  (1)3

  (2)1;

 。2)x31;

 。3)3x5;

 。4)2xy4;

 。5)x31;

 。6)3x14.

  2.方程與等式有什么聯(lián)系與區(qū)別?

  方程是解決實(shí)際問(wèn)題的一個(gè)重要數(shù)學(xué)模型,需要我們進(jìn)一步學(xué)習(xí)研究。

  【課本導(dǎo)學(xué)】

  思考一閱讀并解答課本第114頁(yè)“合作學(xué)習(xí)”的三個(gè)問(wèn)題,思考:

  1.列方程就是根據(jù)問(wèn)題中的相等關(guān)系,寫出含有未知數(shù)的等式。

  (1)原價(jià)為50元的衣服,按8折銷售,售價(jià)是多少元?原價(jià)若為x元呢?

  (2)你能舉例說(shuō)明你對(duì)“物體在水下,水深每增加10米,物體承受的壓力就增加

 。3)張明投進(jìn)x個(gè),那么“小杰投進(jìn)的球的個(gè)數(shù)”可以怎樣表示?“3人一共投進(jìn)的球數(shù)”怎樣表示?

  你是怎么理解“三人平均每人投進(jìn)14個(gè)球”這句話的?

  思考二觀察你所列的方程,這些方程之間有哪些共同的特點(diǎn)?請(qǐng)思考:

  1.你可以從哪些角度對(duì)這些方程進(jìn)行觀察呢?說(shuō)說(shuō)你的想法。

  2.具有“合作學(xué)習(xí)”中所列方程一樣特點(diǎn)的'方程叫做一元一次方程,你能說(shuō)說(shuō)這個(gè)名稱中“元”和“次”的含義嗎?[練習(xí)]完成課本第115頁(yè)課內(nèi)練習(xí)

  1.『歸納』判斷一個(gè)方程是不是一元一次方程應(yīng)抓住哪幾個(gè)關(guān)鍵特點(diǎn)?

  思考三閱讀課本第114頁(yè)倒數(shù)3行至第115頁(yè)正文結(jié)束,并思考下面的問(wèn)題:

  1.(1)如果一個(gè)數(shù)是方程有什么關(guān)系?

 。2)如果一個(gè)數(shù)是方程350應(yīng)該是多少?

 。3)要判斷一個(gè)數(shù)是不是方程3m?2?1?m的解,你會(huì)怎么做?2.對(duì)方程2x12

  14的解,這個(gè)數(shù)代入方程的左邊計(jì)算得到的值與14 3 1

  x500的解,這個(gè)數(shù)代入方程的左邊計(jì)算得到的值10 2x12

  14進(jìn)行嘗試求解時(shí),你認(rèn)為x必須是整數(shù)嗎

  x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說(shuō)說(shuō)你的想法。

  [練習(xí)]完成課本第115頁(yè)課內(nèi)練習(xí)

  2.『歸納』1.檢驗(yàn)一個(gè)數(shù)是不是一元一次方程的解的步驟有哪些?

  2.用嘗試檢驗(yàn)的方法解一元一次方程,你覺得關(guān)鍵的步驟有哪些?【盤點(diǎn)收獲】

  【學(xué)習(xí)檢測(cè)】

  1.下列說(shuō)法正確的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,屬于一元一次方程的是()(a)5x 1

  (b)ab8(c)1257(d)5x82x9 3

  3.設(shè)某數(shù)為x,根據(jù)下列條件列出求該數(shù)的方程:

 。1)某數(shù)加上1,再乘以2,得6.

  (2)某數(shù)與7的和的2倍等于10.

  (3)某數(shù)的5倍比某數(shù)小3.

  4.某校初一年級(jí)328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?

  設(shè)還需租用x輛,則可列出方程44x+64=328.

  (1)寫出一個(gè)方程,使它的解是

  2.【作業(yè)布置】略

  【課后反思】

  課堂教學(xué)總是在“預(yù)設(shè)”與“生成”間交融進(jìn)行,如何根據(jù)學(xué)情做好充分的預(yù)設(shè),又根據(jù)課堂生成靈活應(yīng)變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學(xué)功底.反芻本課,筆者認(rèn)為還有以下幾方面值得反思與改進(jìn):

  1.忽略課堂“火花”,錯(cuò)失追問(wèn)良機(jī)

  在交流對(duì)方程的共同特征探討的環(huán)節(jié),有一個(gè)同學(xué)直接說(shuō)出了“一元一次方程”的名稱.【片斷實(shí)錄】

  師:討論好了吧.哪個(gè)小組先來(lái)說(shuō)說(shuō)你們所歸納的特點(diǎn).生8:這些等式都含有未知數(shù)的,用x或y來(lái)表示.師(板書):嗯,都含有未知數(shù),這個(gè)未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.

  師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來(lái)要具體研究的一元一次方程,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.我們看,剛才這位同學(xué)歸納了:都含有未知數(shù).那么請(qǐng)同學(xué)們看得更仔細(xì)一點(diǎn),未知數(shù)在這里具有什么特征呢?

  不難看出,筆者在這里沒(méi)有很好地抓住學(xué)生的課堂即時(shí)生成資源,用一句“嗯,……,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.”輕輕帶過(guò),仍然拉著學(xué)生回到了預(yù)設(shè)的軌道“……,請(qǐng)同學(xué)們看得更仔細(xì)一點(diǎn),未知數(shù)在這里具有什么特征呢?”如果當(dāng)時(shí)直接問(wèn)她“那么請(qǐng)你講講什

  初中數(shù)學(xué)教案設(shè)計(jì)9

  教學(xué)目標(biāo)

 、俑惺苌钪袃绲倪\(yùn)算的存在與價(jià)值.

  ②經(jīng)歷自主探索同底數(shù)冪的乘法、冪的乘方和積的乘方等運(yùn)算性質(zhì)的過(guò)程,能用代數(shù)式和文字正確地表述這些性質(zhì),并會(huì)運(yùn)用它們熟練地進(jìn)行計(jì)算.

 、壑鸩叫纬瑟(dú)立思考、主動(dòng)探索的習(xí)慣.

 、芡ㄟ^(guò)由特殊到一般的猜想與說(shuō)理、驗(yàn)證,培養(yǎng)學(xué)生一定的說(shuō)理能力和歸納表達(dá)能力.

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):冪的三個(gè)運(yùn)算性質(zhì).

  難點(diǎn):冪的三個(gè)運(yùn)算性質(zhì).

  教學(xué)設(shè)計(jì)

  創(chuàng)設(shè)情境導(dǎo)入新課

  問(wèn)題:一種電子計(jì)算機(jī)每秒可以進(jìn)行1012次運(yùn)算,它工作103s可以進(jìn)行多少次運(yùn)算?你能用學(xué)過(guò)的知識(shí)解決嗎?

  從實(shí)際問(wèn)題的導(dǎo)入,讓學(xué)生自己動(dòng)手試一試,主動(dòng)探索,在自己的實(shí)踐中獲得知識(shí).從而構(gòu)建新的知識(shí)體系,同時(shí)因?yàn)殛P(guān)于底數(shù)、指數(shù)、冪等概念是在有理數(shù)的乘法中學(xué)習(xí)的,學(xué)生可能生疏或遺忘,在新課講解之前利用這個(gè)實(shí)際問(wèn)題進(jìn)行復(fù)習(xí).

  學(xué)生略作思考后得出,它工作103s可以進(jìn)行的運(yùn)算次數(shù)是1012×103.怎樣計(jì)算1012×103?

  根據(jù)乘方的意義可以知道:

  探究新知1.探一探根據(jù)乘方的意義填空:

  從引例到“探一探”,“猜一猜”,“說(shuō)一說(shuō)”是一個(gè)從特殊到一般,從具體到抽象,把冪的底數(shù)與指數(shù)分兩步有層次地進(jìn)行概括抽象的過(guò)程.在這一過(guò)程中,要注意留給學(xué)生探索與交流的空間,讓學(xué)生在自己的實(shí)踐中獲得運(yùn)算法則.

  學(xué)生獨(dú)立思考后回答,教師板演.

  2.猜一猜

  問(wèn):看看計(jì)算結(jié)果,你能發(fā)現(xiàn)結(jié)果有什么規(guī)律嗎?

  學(xué)生小組討論后交流結(jié)果:不管底數(shù)是什么數(shù),只要底數(shù)相同,結(jié)果就是指數(shù)相加.

  3.說(shuō)一說(shuō)

  am×an(m,n是正整數(shù))?學(xué)生說(shuō)出理由,教師板演共同得出結(jié)論:am×an=am+n(m,n都是正整數(shù))

  即同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  注意性質(zhì)中的m、n的取值范圍.

  注:要求學(xué)生用語(yǔ)言敘述這個(gè)性質(zhì),即“同底數(shù)的冪相乘,底數(shù)不變,指數(shù)相加”,這對(duì)于學(xué)生提高數(shù)學(xué)語(yǔ)言的表述能力是有益的.

  4.想一想

  am×an×ap=?

  5.做一做

  例1教科書第142頁(yè)的例1(1)~(4)

 。5)—a3a5;

 。6)(x+1)2(x+1)3

  同底數(shù)冪的性質(zhì)很容易推廣到三個(gè)以上的同底數(shù)冪相乘.

  在例1的課堂教學(xué)中教師要求學(xué)生說(shuō)明底數(shù)是什么,指數(shù)是什么,引導(dǎo)學(xué)生觀察是不是同底數(shù)冪相乘,再利用性質(zhì)進(jìn)行計(jì)算.例1(5)中注意讓學(xué)生說(shuō)清“—a3”的底數(shù)是“a”還是“—a”.性質(zhì)中的字母可以是單項(xiàng)式也可以是多項(xiàng)式,如例1(6),把底數(shù)進(jìn)一步擴(kuò)充到式的范圍.

  6.自主學(xué)習(xí)

  根據(jù)乘方的意義及同底數(shù)冪的乘法,讓學(xué)生自主探究教科書第170頁(yè)探究問(wèn)題.學(xué)生在獨(dú)立思考、合作交流的`基礎(chǔ)上,得出冪的乘方運(yùn)算性質(zhì):(am)n=amn(m,n都是正整數(shù))即冪的乘方,底數(shù)不變,指數(shù)相乘.

  7.做一做

  例2教科書第171頁(yè)的例2(1)~(4)

 。5) —(x3)4x2

  8.想一想

  讓學(xué)生自主探究教科書第171頁(yè)的探究問(wèn)題,并完成填空.嘗試分析運(yùn)算過(guò)程中用到哪些運(yùn)算律?運(yùn)算結(jié)果有什么規(guī)律?

  學(xué)生自己歸納出積的乘方的運(yùn)算性質(zhì):(ab)n=anbn(n為正整數(shù))即積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘.

  那么,(abc)n=?

  注:和前兩個(gè)性質(zhì)的教學(xué)一樣,這個(gè)性質(zhì)也是先用具體指數(shù)為例說(shuō)明積的乘方的意義和導(dǎo)出性質(zhì)的每一步依據(jù),從而歸納出一般指數(shù)情形的性質(zhì).這個(gè)性質(zhì)也很容易推廣到三個(gè)以上因式的乘方.

  9.做一做

  例3教科書第172頁(yè)的例3(1)~(4);補(bǔ)充:(5) [—3(x+y)2]3

  例4 計(jì)算:x(x2)3—2x4x2

  比一比

  這節(jié)課我們學(xué)習(xí)了三個(gè)運(yùn)算性質(zhì):“同底數(shù)冪的乘法”、“冪的乘方”和“積的乘方”.組織學(xué)生進(jìn)行計(jì)時(shí)比賽,在規(guī)定時(shí)間內(nèi)完成教科書第170頁(yè)、17l頁(yè)、172頁(yè)的練習(xí).

  深入探究例5計(jì)算:(1)(—8)20xx(—0。125)20xx(2)(—2)2n+1+2(—2)2n(n為正整數(shù)).

  在這三個(gè)性質(zhì)中的底數(shù)、指數(shù)中,指數(shù)注明為正整數(shù),而底數(shù)可以是數(shù)、字母或式.把底數(shù)進(jìn)一步擴(kuò)充到式的范圍.

  議一議

  下面的計(jì)算對(duì)不對(duì)?如果不對(duì),應(yīng)當(dāng)怎樣改正.

 。1)a3a3=a6; (2)b4b4=2b4;

 。3)x5+x5=x10; (4)y7y=y8;

 。5)(a3)5=a8; (6)a3a5=a15;

 。7)(a2)3a4=a9; (8)(xy3)2=xy6;

 。9)(—2x)3=—2x3

  注:補(bǔ)充議一議與辨析題的目的是讓學(xué)生通過(guò)對(duì)這些判斷題的討論甚至爭(zhēng)論,加強(qiáng)對(duì)運(yùn)算性質(zhì)的掌握,同時(shí)也培養(yǎng)學(xué)生一定的批判性思維能力.

  小結(jié)

  組織學(xué)生討論和辨析三個(gè)運(yùn)算性質(zhì).

  課外鞏固

  1.必做題:教科書第148頁(yè)習(xí)題15。1第1、2題.

  2.備選題:

 。1)計(jì)算:

 。2)計(jì)算:am—1an+2+am+2an—1+aman+1

 。3)已知:am=7,bm=4,則(ab)2m=______

 。4)已知:3x+2y—3=0,則27x9y=___________

  初中數(shù)學(xué)教案設(shè)計(jì)10

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1.命題的組成:條件和結(jié)論。 2。命題的真假 。 3。了解數(shù)學(xué)史。

 。ǘ┠芰τ(xùn)練要求

  1.能夠分清命題的題設(shè)和結(jié)論。會(huì)把命題改寫成“如果……,那么……”的形式;能 判斷命題的真假。

  2.通過(guò)舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問(wèn)題的方法。

  3.通過(guò)對(duì)歐幾里得《原本》 的介紹,感受幾何的演繹體系對(duì)數(shù)學(xué)發(fā)展和人類文明的價(jià)值。

  (三)情感與價(jià)值觀要求

  1.通過(guò)舉反例的方法來(lái) 判斷一個(gè)命題是假命題,說(shuō)明任何事物都是正反兩方面的對(duì)立統(tǒng)一體。

  2.通過(guò)了解數(shù)學(xué)知識(shí),拓展學(xué)生的視野,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。

  教學(xué)重點(diǎn)

  找出命題的條件(題設(shè))和結(jié)論。

  教學(xué) 難點(diǎn)

  找出命題的條件和結(jié)論。

  教學(xué)過(guò)程

  Ⅰ.巧設(shè)現(xiàn)實(shí)情境,引入課題

  上節(jié)課我們研究了命題,那么什么叫命題呢?

  下面大家來(lái) 想一想:

  觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同的結(jié)構(gòu)特征?

 。1)如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。

  (2)如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形。

 。3)如果一個(gè)三角形是 等腰三角形,那 么這個(gè)三角形的兩個(gè)底角相等。

 。4)如果一個(gè)四邊形的對(duì)角線相等,那么這個(gè)四邊形是矩形。

 。5)如果一個(gè)四邊形的兩條對(duì)角線互相垂直,那么這個(gè)四邊形是菱形。

  學(xué)生分組討論。

  ①這五個(gè)命題都是用“如果……,那么……”的 形 式敘述的。

 、诿總(gè)命題都 是由已知得到結(jié)論。

  ③這五個(gè)命題的每個(gè)命題都有條件和結(jié)論。

 、.講授新課

  1 .命題的`組成:每個(gè)命題都有條件和結(jié)論兩部分組成。

  條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推斷 出的事項(xiàng)。

  2.舉例說(shuō)明 命題如何寫成“如果……,那么……”的形式

  ①明顯的。

 、诓幻黠@的。

  做一做

  1.下列各命題的條件是什么?結(jié)論是 什么?

 。1)如果兩個(gè)角相等,那么它們是對(duì)頂角;

  (2)如果a>b,b>c,那么a=c;

 。3)兩角和其中一角的對(duì)邊對(duì)應(yīng) 相等的兩個(gè)三角形全等;

 。4)菱形的四條邊都 相等;

 。5)全等三角形的面積相等。

  2.上述命題中哪 些是正確的?哪些是不正確的?你怎么知道它們是不正確的?

  3.真命題和假命題

  我們把正確的命題稱為真命題(tru e statement),不正確的命題稱為假命題(false statement)。

  思考:如何證實(shí)一個(gè)命題是真命題呢?

  4.我們這套教材有如下命題作為公理:

  1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。

  2.兩條平行線被第三條直線所 截,同位角相等。

  3.兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。

  4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全 等。

  5.三邊對(duì)應(yīng)相等的兩個(gè) 三角形全等。

  6.全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

  Ⅲ.課堂練習(xí)

 、.課時(shí)小結(jié)

  本節(jié)課我們主要研究了命題的組成及真假。知道任何一個(gè)命題都是由條件和結(jié)論兩部分組成。命題分為真命題和 假命題。

  在辨別真假命題時(shí)。注意:假命題只需舉一個(gè)反例即可。而真命題除公理和性質(zhì)外,必須通過(guò)推理得證。

 、.課后作業(yè)

  2.預(yù)習(xí)提綱

  (1)平行線的判定方法的證明

 。2)如何進(jìn)行推理

  初中數(shù)學(xué)教案設(shè)計(jì)11

  教學(xué)目標(biāo)

 。ㄒ唬┲R(shí)認(rèn)知要求

  1;仡櫴占瘮(shù)據(jù)的方式。

  2。回顧收集數(shù)據(jù)時(shí),如何保證樣本的代表性。

  3;仡欘l率、頻數(shù)的概念及計(jì)算方法。

  4;仡櫩坍嫈(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量:極差、方差、標(biāo)準(zhǔn)差的概念及計(jì)算公式。

  5。能利用計(jì)算器或計(jì)算機(jī)求一組數(shù)據(jù)的算術(shù)平均數(shù)。

 。ǘ┠芰τ(xùn)練要求

  1。熟練掌握本章的知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)。

  2。經(jīng)歷數(shù)據(jù)的收集與處理的過(guò)程,發(fā)展初步的統(tǒng)計(jì)意識(shí)和數(shù)據(jù)處理能力。

  3。經(jīng)歷調(diào)查、統(tǒng)計(jì)等活動(dòng),在活動(dòng)中發(fā) 展學(xué)生解決問(wèn)題的能力。

 。ㄈ┣楦信c價(jià)值觀要求

  1。通過(guò)對(duì)本章內(nèi)容的回顧與思考,發(fā)展學(xué) 生用數(shù)學(xué)的意識(shí)。

  2。在活動(dòng)中培養(yǎng)學(xué)生團(tuán)隊(duì)精神。

  教學(xué)重點(diǎn)

  1。建立本章的知識(shí)框架圖。

  2。體會(huì)收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng) 計(jì)量在實(shí)際情境中的意義和應(yīng)用。

  教學(xué)難點(diǎn)

  收集數(shù)據(jù)的方式、抽樣時(shí)保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計(jì)量在不同情境中的應(yīng)用。

  教學(xué)過(guò)程

  一、導(dǎo)入新課

  本章的內(nèi)容已全部學(xué)完,F(xiàn)在如何讓你調(diào)查一個(gè)情況。并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報(bào)告,我想大家現(xiàn)在心里應(yīng)該有數(shù)。

  例如,我們要調(diào)查一下“上網(wǎng)吧的人的年齡”這一情況,我們應(yīng)如何操作?

  先選擇調(diào)查方式,當(dāng)然這個(gè)調(diào)查應(yīng)采用抽樣調(diào)查的方式,因?yàn)槲覀儾豢赡苷{(diào)查到所有上網(wǎng)吧的人,何況也沒(méi)有必要。

  同學(xué)們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計(jì)分析,然后把調(diào)查結(jié)果匯報(bào)上來(lái),我們可以比一比,哪一個(gè)組表現(xiàn)最好?

  二、講授新課

  1。舉例說(shuō)明收集數(shù)據(jù)的方式主要有哪幾種類型。

  2。抽樣調(diào)查時(shí),如何保證樣本的代表性?舉例說(shuō)明。

  3。舉出與頻數(shù)、頻率有關(guān)的幾個(gè)生活實(shí)例?

  4。刻畫數(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量有 哪些?它們有什么作用?舉例說(shuō)明。

  針對(duì)上面的幾個(gè)問(wèn)題,同學(xué)們先獨(dú) 立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來(lái)回答。

 。ń處熆蓞⑴c到學(xué)生的討論中,發(fā)現(xiàn)同學(xué)們前面知識(shí)掌握不好的地方,及時(shí)補(bǔ)上)。

  收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查。

  例如:調(diào)查我校八年級(jí)同學(xué)每天做家庭作業(yè)的時(shí)間,我們就可以用普查的形式。

  在這次調(diào)查中,總體:我校八年級(jí)全體學(xué)生每天做家庭作業(yè)的時(shí)間;個(gè)體:我校八年級(jí)每個(gè)學(xué)生每天做家庭作業(yè)的時(shí)間。

  用普查的方式可以直接獲得總體情況。但有時(shí)總體中個(gè)體數(shù)目太多,普查的工作量較大;有時(shí)受客觀條件的限制,無(wú)法對(duì)所有個(gè)體進(jìn)行普查;有時(shí)調(diào)查具有破壞性,不允許普查,此時(shí)可用抽樣調(diào)查。

  例如把上面問(wèn)題改成“調(diào)查全國(guó)八年級(jí)同學(xué)每天做家庭作業(yè)的時(shí)間”,由于個(gè)體數(shù)目太多,普查的工作量也較大,此時(shí)就采取抽樣調(diào)查,從總體中抽取一個(gè)樣本,通過(guò)樣本的特征數(shù)字來(lái)估計(jì)總體,例如平均數(shù)、中位數(shù)、眾數(shù) 、極差、方差等。

  上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因?yàn)橹?有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會(huì)失去可靠性和準(zhǔn)確性。

  例如對(duì)我們班里某門學(xué)科的成績(jī)情況,有時(shí)不僅知道平均成績(jī),還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時(shí),我們只要看一下每個(gè)學(xué)生的成績(jī)落在哪一個(gè)分?jǐn)?shù)段,落在這個(gè)分?jǐn)?shù)段的分?jǐn)?shù)有幾個(gè),表明數(shù)據(jù)落在這個(gè)小組的頻數(shù)就是多少,數(shù)據(jù)落在這個(gè)小組的頻率就是頻數(shù)與數(shù)據(jù)總個(gè)數(shù)的商。

  刻畫數(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量有極差、方差、標(biāo)準(zhǔn)差。它們是用來(lái)描述一組數(shù)據(jù)的穩(wěn)定性的。一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  例如:某農(nóng)科所在8個(gè)試驗(yàn)點(diǎn),對(duì)甲、乙兩種玉米進(jìn)行對(duì)比試驗(yàn),這兩種玉米在各試驗(yàn)點(diǎn)的畝產(chǎn)量如下(單位:千克)

  甲:450 460 450 430 450 460 440 460

  乙:440 470 460 440 430 450 470 4 40

  在這個(gè)試驗(yàn)點(diǎn)甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?

  我們可以算極差。甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克。所以甲種玉米較穩(wěn)定。

  還可以用方差來(lái)比較哪一種玉米穩(wěn)定。

  s甲2=100,s乙2=200。

  s甲2<s乙2,所以甲種玉米的產(chǎn)量較穩(wěn)定。

  三。建立知識(shí)框架圖

  通 過(guò)剛才的幾個(gè)問(wèn)題回顧思考了我們這一章的重點(diǎn)內(nèi)容,下面構(gòu)建本章的`知識(shí)結(jié)構(gòu)圖。

  四、隨堂練習(xí)

  例1一家電腦生產(chǎn)廠家在某城市三個(gè)經(jīng)銷本廠產(chǎn)品的大商場(chǎng)調(diào)查,產(chǎn)品的銷量占這三個(gè) 大商場(chǎng)同類產(chǎn)品銷量的40%。由此在廣告中宣傳,他們的產(chǎn)品在國(guó)內(nèi)同類產(chǎn)品的銷售量占40%。請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________。

  分析:這是一道判斷說(shuō)理型題,它要求借助于統(tǒng)計(jì)知識(shí),作出科學(xué)的判斷, 同時(shí)運(yùn) 用統(tǒng)計(jì)原理給予準(zhǔn)確的解釋。因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說(shuō)他們的產(chǎn)品在國(guó)內(nèi)同類產(chǎn)品的銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太。坏诙,樣本抽取缺乏代表性和廣泛性。

  例2在舉國(guó)上下眾志成城抗擊“非典” 的斗爭(zhēng)中,疫情變化牽動(dòng)著全國(guó)人民的心 。請(qǐng)根據(jù)下面的疫情統(tǒng)計(jì)圖表回答問(wèn)題:

 。1)圖10是5月11日至5月29日全國(guó)疫情每天新增數(shù)據(jù)統(tǒng)計(jì)走勢(shì)圖,觀察后回答:

 、倜刻煨略龃_診病例與新增疑似病例人數(shù)之和超過(guò)100人的天數(shù)共有__________天;

 、谠诒绢}的統(tǒng)計(jì)中,新增確診病例的人數(shù)的中位數(shù)是___________;

 、郾绢}在對(duì)新增確診病例的統(tǒng)計(jì)中,樣本是__________,樣本容量是__________。

  (2)下表是我國(guó)一段時(shí)間內(nèi)全國(guó)確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計(jì)表。(按人數(shù)分組)

  ①100人以下的分組組距是________;

 、谔顚懕窘y(tǒng)計(jì)表中未完成的空格;

 、墼诮y(tǒng)計(jì)的這段時(shí)期中,每天新增確診

  病例人數(shù)在80人以下的天數(shù)共有_________天。

  解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數(shù) 19

 。2)①10人 ②11 40 0。125 0。325 ③25

  五.課時(shí)小結(jié)

  這節(jié)課我們通過(guò)回顧與思考這一章的重點(diǎn)內(nèi)容,共同建立的知識(shí)框架圖,并進(jìn)一步用統(tǒng)計(jì)的思想和知識(shí)解決問(wèn)題,作出決策。

  六.課后作業(yè):

  七.活動(dòng)與探究

  從魚塘捕得同時(shí)放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質(zhì)量分別是1。5,1。6,1。4,1。6,1。3,1。4,1。2,1。7,1。8(單位:千克)。依此估計(jì)這240尾魚的總質(zhì)量大約是

  A。300克 B。360千克C。36千克 D。30千克

  初中數(shù)學(xué)教案設(shè)計(jì)12

  教材與學(xué)情:

  解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進(jìn)行教學(xué),它是把一些實(shí)際問(wèn)題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問(wèn)題,對(duì)分析問(wèn)題能力要求較高,這會(huì)使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。

  信息論原理:

  將直角三角形中邊角關(guān)系作為已有信息,通過(guò)復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過(guò)例題講解,達(dá)到信息處理;通過(guò)總結(jié)歸納,使信息優(yōu)化;通過(guò)變式練習(xí),使信息強(qiáng)化并能靈活運(yùn)用;通過(guò)布置作業(yè),使信息得到反饋。

  教學(xué)目標(biāo)

  ⒈認(rèn)知目標(biāo):

 、哦贸R娒~(如仰角、俯角)的意義

  ⑵能正確理解題意,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)

 、悄芾靡延兄R(shí),通過(guò)直接解三角形或列方程的方法解決一些實(shí)際問(wèn)題。

 、材芰δ繕(biāo):培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生思維能力的靈活性。

  ⒊情感目標(biāo):使學(xué)生能理論聯(lián)系實(shí)際,培養(yǎng)學(xué)生的對(duì)立統(tǒng)一的觀點(diǎn)。

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn):利用解直角三角形來(lái)解決一些實(shí)際問(wèn)題

  難點(diǎn):正確理解題意,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。

  信息優(yōu)化策略:

 、旁趯W(xué)生對(duì)實(shí)際問(wèn)題的探究中,神經(jīng)興奮,思維活動(dòng)始終處于積極狀態(tài)

 、圃跉w納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。

 、侵匾晫W(xué)法指導(dǎo),以加速教學(xué)效績(jī)信息的順利體現(xiàn)。

  教學(xué)媒體:

  投影儀、教具(一個(gè)銳角三角形,可變換圖2-圖7)

  高潮設(shè)計(jì):

  1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性

  2、將一個(gè)銳角三角形紙片通過(guò)旋轉(zhuǎn)、翻折等變換,使學(xué)生對(duì)問(wèn)題本質(zhì)有了更深的認(rèn)識(shí)

  教學(xué)過(guò)程

  一、復(fù)習(xí)引入,輸入并貯存信息

  1.提問(wèn):如圖,在Rt△ABC中,∠C=90°。

 、湃卆、b、c有什么關(guān)系?

 、苾射J角∠A、∠B有怎樣的關(guān)系?

 、沁吪c角之間有怎樣的關(guān)系?

  2.提問(wèn):解直角三角形應(yīng)具備怎樣的條件:

  注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息

  二、實(shí)例講解,處理信息:

  例1.(投影)在水平線上一點(diǎn)C,測(cè)得同頂?shù)难鼋菫?0°,向山沿直線 前進(jìn)20為到D處,再測(cè)山頂A的仰角為60°,求山高AB。

 、乓龑(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。

 、品治觯呵驛B可以解Rt△ABD和

  Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。

 、墙忸}過(guò)程,學(xué)生練習(xí)。

  ⑷思考:假如∠ADB=45°,能否直接來(lái)解一個(gè)三角形呢?請(qǐng)看例2。

  例2.(投影)在水平線上一點(diǎn)C,測(cè)得山頂A的'仰角為30°,向山沿直線前進(jìn)20米到D處,再測(cè)山頂A的仰角為45°,求山高AB。

  分析:

 、旁赗t△ABC和Rt△ABD中,都沒(méi)有兩個(gè)已知元素,故不能直接解一個(gè)三角形來(lái)求出AB。

 、瓶紤]到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個(gè)直角三角形的直角邊,但CD=BC=BD,啟以學(xué)生設(shè)AB=X,通過(guò) 列方程來(lái)解,然后板書解題過(guò)程。

  解:設(shè)山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、歸納總結(jié),優(yōu)化信息

  例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來(lái)解。

  四、變式訓(xùn)練,強(qiáng)化信息

  (投影)練習(xí)1:如圖,山上有鐵塔CD為m米,從地上一點(diǎn)測(cè)得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。

  練習(xí)2:如圖,海岸上有A、B兩點(diǎn)相距120米,由A、B兩點(diǎn)觀測(cè)海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。

  練習(xí)3:在塔PQ的正西方向A點(diǎn)測(cè)得頂端P的

  仰角為30°,在塔的正南方向B點(diǎn)處,測(cè)得頂端P的仰角為45°且AB=60米,求塔高PQ。

  教師待學(xué)生解題完畢后,進(jìn)行講評(píng),并利用教具揭示各題實(shí)質(zhì):

 、艑⒒緢D形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉(zhuǎn)90°,即可得圖7的立體圖形。

  ⑵引導(dǎo)學(xué)生歸納三個(gè)練習(xí)題的等量關(guān)系:

  練習(xí)1的等量關(guān)系是AB=AB;練習(xí)2的等量關(guān)系是AD+BD=AB;練習(xí)3的等量關(guān)系是AQ2+BQ2=AB2

  五、作業(yè)布置,反饋信息

  《幾何》第三冊(cè)P57第10題,P58第4題。

  板書設(shè)計(jì):

  解直角三角形的應(yīng)用

  例1已知:………例2已知:………小結(jié):………

  求:………求:………

  解:………解:………

  練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………

  求:………求:………求:………

  解:………解:………解:………

  初中數(shù)學(xué)教案設(shè)計(jì)13

  一.學(xué)生情況分析

  學(xué)生已經(jīng)學(xué)習(xí)了平行四邊形的性質(zhì)和判定,也學(xué)習(xí)了一種特殊的平行四邊形菱形的性質(zhì)和判定,對(duì)于類似的問(wèn)題有一定的學(xué)習(xí)精力、經(jīng)驗(yàn)和感受,這將更有利于學(xué)生對(duì)本節(jié)課的學(xué)習(xí)。

  二.教學(xué)任務(wù)分析

  教學(xué)目標(biāo):

  知識(shí)目標(biāo):

  1.掌握正方形的定義,弄清正方形與平行四邊形、菱形、矩形的關(guān)系。

  2.掌握正方形的性質(zhì)定理1和性質(zhì)定理2。

  3.正確運(yùn)用正方形的性質(zhì)解題。

  能力目標(biāo):

  1.通過(guò)四邊形的從屬關(guān)系滲透集合思想。

  2.在直觀操作活動(dòng)和簡(jiǎn)單的說(shuō)理過(guò)程中,發(fā)展學(xué)生初步的合情推理能力、主動(dòng)探究習(xí)慣,逐步掌握說(shuō)理的基本方法。

  情感與價(jià)值觀

  1.通過(guò)理解四種四邊形內(nèi)在聯(lián)系,培養(yǎng)學(xué)生辯證觀點(diǎn)

  教學(xué)重點(diǎn):正方形的性質(zhì)的應(yīng)用.

  教學(xué)難點(diǎn):正方形的性質(zhì)的應(yīng)用.

  三、教學(xué)過(guò)程設(shè)計(jì)

  課前準(zhǔn)備

  教具準(zhǔn)備: 一個(gè)活動(dòng)的平行四邊形木框、白紙、剪刀.

  學(xué)生用具:白紙、剪刀

  教學(xué)過(guò)程設(shè)計(jì)分成四分環(huán)節(jié):

  第一環(huán)節(jié):巧設(shè)情境問(wèn)題,引入課題

  第二環(huán)節(jié):講授新課

  第三環(huán)節(jié):新課小結(jié)

  第四環(huán)節(jié):布置作業(yè)

  第一環(huán)節(jié) 巧設(shè)情境問(wèn)題,引入課題

  進(jìn)入正題,提出本節(jié)課的研究主題正方形

  第二環(huán)節(jié) 講授新課

  主要環(huán)節(jié)

 。1)呈現(xiàn)兩種通過(guò)不同途徑得到正方形的過(guò)程,給正方形下定義

 。2)討論正方形的性質(zhì)

  (3)通過(guò)練習(xí)加強(qiáng)對(duì)正方形性質(zhì)的理解

 。4)尋找平行四邊形、矩形、菱形、正方形之間的相互關(guān)系。

 。5)尋找正方形的判定方法

  目的:

  1. 正方形是特殊的平行四邊形,也是特殊的矩形和菱形,因此想得到一個(gè)正方形,可以在矩形的基礎(chǔ)上強(qiáng)化邊的條件得到,也可以在菱形的基礎(chǔ)上強(qiáng)化角的條件得到。于是在課上呈現(xiàn)這兩種變化,為后面尋求平行四邊形、矩形、菱形、正方形的關(guān)系打下基礎(chǔ)。

  2. 由于采用了兩種正方形形成的方式,因此正方形的性質(zhì)和判定方法都可以從中挖掘和發(fā)現(xiàn)。

  大致教學(xué)過(guò)程

  呈現(xiàn)一個(gè)平行四邊形變成正方形的全過(guò)程.(演示)

  由于平行四邊形具有不穩(wěn)定性,所以先把平行四邊形木框的一個(gè)角變?yōu)橹苯,再移?dòng)一條短邊,截成有一組鄰邊相等,此時(shí)平行四邊形變成了一個(gè)正方形.

  這個(gè)變化過(guò)程,可用如下圖表示

  由此可知:正方形是一組鄰邊相等的矩形.即:一組鄰邊相等的矩形叫做正方形.

  這個(gè)平行四邊形木框還可以這樣變化:先移動(dòng)一條短邊,截成有一組鄰邊相等的平行四邊形,再把一個(gè)角變成直角,此時(shí)的平行四邊形也變成了正方形.

  這個(gè)變化過(guò)程,也可用圖表示

  你能根據(jù)上面的變化過(guò)程,給正方形下定義嗎?

  一組鄰邊相等的平行四邊形是菱形.正方形是一個(gè)角為直角的菱形,所以可以說(shuō):有一個(gè)角是直角的菱形叫做正方形.

  由此可知:正方形是特殊的矩形,即是鄰邊相等的矩形,也是特殊的菱形,即是有一個(gè)角是直角的菱形.

  因?yàn)檎叫问瞧叫兴倪呅、菱形、矩形,所以它的性質(zhì)是它們的綜合,不僅有平行四邊形的所有性質(zhì),也有矩形和菱形的特殊性質(zhì),即:正方形具有平行四邊形、菱形、矩形的一切性質(zhì).

  正方形的性質(zhì):

  邊:對(duì)邊平行、四邊相等

  角:四個(gè)角都是直角

  對(duì)角線:對(duì)角線相等,互相垂直平分,每條對(duì)角線平分一組對(duì)角.

  正方形是軸對(duì)稱圖形嗎?如是,它有幾條對(duì)稱軸?

  正方形是軸對(duì)稱圖形,它有四條對(duì)稱軸,即:兩條對(duì)角線,兩組對(duì)邊的中垂線.

  例題

 。劾1]如圖,四邊形ABCD是正方形,兩條對(duì)角線相交于點(diǎn)O,求AOB,OAB的'度數(shù).

  分析:本題是正方形的性質(zhì)的直接應(yīng)用.正方形的性質(zhì)很多,要恰當(dāng)運(yùn)用,本題主要用到正方形的對(duì)角線的性質(zhì),即正方形的軸對(duì)稱性.

  解:正方形ABCD是菱形,對(duì)角線AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且對(duì)角線AC平分BAD,因此:OAB=45

  拿出準(zhǔn)備好的剪刀、白紙來(lái)做一做

  將一張長(zhǎng)方形紙對(duì)折兩次,然后剪下一個(gè)角,打開,怎樣剪才能剪出一個(gè)正方形?(學(xué)生動(dòng)手折疊,想,剪切)

  只要保證剪口線與折痕成45角即可.因?yàn)檎叫蔚膬蓷l對(duì)角線把它分成四個(gè)全等的等腰直角三角形,把折痕作對(duì)角線,這時(shí)只需剪一個(gè)等腰直角三角形,打開即是正方形.

  正方形是平行四邊形、矩形、又是菱形,那么它們四者之間有何關(guān)系呢?

  正方形、矩形、菱形及平行四邊形四者之間有什么關(guān)系呢?

  它們的包含關(guān)系如圖:

  此圖給出了正方形的判別條件,即怎樣判定一個(gè)平行四邊形是正方形?

  先判定一個(gè)四邊形是平行四邊形,再判定這個(gè)平行四邊形是矩形,然后再判定這個(gè)矩形是菱形;或者先判定一個(gè)四邊形是菱形,再判定這個(gè)菱形是矩形.

  由于判定平行四邊形、矩形、菱形的方法各異,所給出的條件不一樣,所以判定一個(gè)四邊形是不是正方形的具體條件相應(yīng)可作變化,在應(yīng)用時(shí)要仔細(xì)辨別后才可以作出判斷.

  第三環(huán)節(jié) 課堂練習(xí)

  教材 隨堂練習(xí)1,2

  第四環(huán)節(jié) 課時(shí)小結(jié)

  正方形的定義:一組鄰邊相等的矩形.

  正方形的性質(zhì)與平行四邊形、矩形、菱形的性質(zhì)可比較如下:(出示小黑板)

  第五環(huán)節(jié) 課后作業(yè)

  課本習(xí)題4.7 1,2,3.

  四.教學(xué)設(shè)計(jì)反思

  在教材中,并沒(méi)有明確的給出正方形的判定定理。那么教師在課堂上應(yīng)該幫助學(xué)生理清思路,使他們明確判定的方法。

  為了實(shí)現(xiàn)這個(gè)目標(biāo),在本節(jié)課的開始,教師就采取了兩種方式呈現(xiàn)正方形的形成過(guò)程,在直觀上幫助學(xué)生認(rèn)識(shí)了正方形與矩形、正方形與菱形之間的關(guān)系;在講解正方形性質(zhì)的過(guò)程中又再次強(qiáng)化了這種認(rèn)識(shí)。通過(guò)層層鋪墊,讓學(xué)生明確矩形+鄰邊相等就是正方形,菱形+一個(gè)直角就是正方形,如何判定圖形是矩形或是菱形,前面已經(jīng)學(xué)習(xí)過(guò),因此關(guān)于正方形的判定是需要一個(gè)條件一個(gè)條件“疊加”完成的。

  初中數(shù)學(xué)教案設(shè)計(jì)14

  教材分析

  1.本節(jié)在引言中的方程基礎(chǔ)上,首先通過(guò)兩個(gè)實(shí)際問(wèn)題,進(jìn)一步引出一元二次方程的具體例子,然后引導(dǎo)學(xué)生觀察出它們的共同點(diǎn),得出一元二次方程的定義。

  2.書中的定義是以未知數(shù)的個(gè)數(shù)和次數(shù)為標(biāo)準(zhǔn),用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本節(jié)始終都有列方程的內(nèi)容,這樣安排一方面是分散列方程這一教學(xué)難點(diǎn),化整為零地培養(yǎng)由實(shí)際問(wèn)題抽象出方程模型的能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。

  學(xué)情分析

  1、通過(guò)課堂練習(xí),大部分學(xué)生對(duì)概念基本理解,能夠找出各項(xiàng)系數(shù),但有少數(shù)學(xué)困生對(duì)于系數(shù)符號(hào)沒(méi)有掌握。

  2、部分學(xué)生由于基礎(chǔ)較薄弱,用一元二次方程解決實(shí)際問(wèn)題有一定的`難度,解決這問(wèn)題要以多練為主。

  3、學(xué)生認(rèn)知障礙點(diǎn):一元二次方程與不等式和整式的綜合運(yùn)用能力有待提高。

  教學(xué)目標(biāo)

  1、從實(shí)際問(wèn)題引出一元二次方程,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力及用數(shù)學(xué)的意識(shí)。

  2、使學(xué)生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉(zhuǎn)化為一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。

  3、通過(guò)概念教學(xué),培養(yǎng)學(xué)生的觀察、類比、歸納能力,同時(shí)通過(guò)變式練習(xí),使學(xué)生對(duì)概念理解具備完整性和深刻性。

  教學(xué)重點(diǎn)和難點(diǎn)

  1、重點(diǎn):概念的形成及一般形式。

  2、難點(diǎn):從實(shí)際問(wèn)題引出一元二次方程;正確識(shí)別一般形式中的“項(xiàng)”及“系數(shù)”。

  初中數(shù)學(xué)教案設(shè)計(jì)15

  一教學(xué)目標(biāo)

  1.通過(guò)案例理解正比例函數(shù),能列出正比例函數(shù)關(guān)系式

  2.教會(huì)學(xué)生應(yīng)用正比例函數(shù)解決生活實(shí)際問(wèn)題的能力

  二教學(xué)重點(diǎn)

  理解正比例函數(shù)的概念

  三教學(xué)難點(diǎn)

  利用正比例函數(shù)解決生活實(shí)際問(wèn)題

  四教學(xué)過(guò)程

  【提出問(wèn)題】

  1.《阿甘正傳》是一部勵(lì)志影片。片中阿甘曾跑步繞美國(guó)數(shù)圈,假設(shè)他從德州到加州行進(jìn)了千米,耗費(fèi)了他150天時(shí)間。

 。1)阿甘大約平均每天跑步多少千米?

 。3)阿甘一個(gè)月(30天)的行程是多少千米?

  【生】列算式回答

  【師】點(diǎn)評(píng)總結(jié)

  2.寫出下列變量間的函數(shù)表達(dá)式

 。1)正方形的周長(zhǎng)l和半徑r之間的關(guān)系【進(jìn)一步抽象問(wèn)題讓學(xué)生思考】

  (2)大米每千克四元,則售價(jià)y元與數(shù)量x(kg)的函數(shù)關(guān)系式是什么?

 。3)下列函數(shù)關(guān)系式有什么共同點(diǎn)?(小組合作)【分析共同點(diǎn)和不同點(diǎn),找出規(guī)律】

 。1)y=200x(2) l=2∏r(3) m=

  【生回答,師點(diǎn)評(píng)】

  【引入新課】

  正比例函數(shù)的概念:

  一般地,形如y=kx (k≠0)的.函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).【板書概念,引導(dǎo)學(xué)生分析正比例函數(shù)的定義】

  2 【例題講解】

  例1在同一坐標(biāo)系里,畫出下列函數(shù)的圖像:y==x y=3x

  解:【略】 【掌握函數(shù)圖像的畫法:列表,描點(diǎn),連線】

  3.練習(xí)

  (1)已知正比例函數(shù)y=kx.當(dāng)x=3時(shí)y=6 。求k的值

  (2)一種筆記本每本的單價(jià)為3元。則銷售金額y元與銷售量x之間的關(guān)系式是怎樣的?當(dāng)銷售金額為360元時(shí),則售出了多少本這種筆記本?

  四小結(jié)

  五課外作業(yè)

  【反思】

  由于函數(shù)的概念比較抽象,學(xué)生不容易理解。而理解函數(shù)的概念是教學(xué)的重點(diǎn)。這節(jié)課首先通過(guò)實(shí)例,回顧函數(shù)的概念,其次抽象提出正比例函數(shù)關(guān)系式,由學(xué)生觀察得到特點(diǎn),然后引出正比例函數(shù)的概念和特點(diǎn),再通過(guò)練習(xí)加以鞏固,最后通過(guò)小組討論利用正比例函數(shù)解決生活中的問(wèn)題。

  初中數(shù)學(xué)教案設(shè)計(jì)16

  一、教學(xué)目標(biāo):

  1.理解并掌握矩形的判定方法.

  2.使學(xué)生能應(yīng)用矩形定義、判定等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):矩形的判定.

  2.難點(diǎn):矩形的判定及性質(zhì)的綜合應(yīng)用.

  三、例題的意圖分析

  本節(jié)課的三個(gè)例題都是補(bǔ)充題,例1在的一組判斷題是為了讓學(xué)生加深理解判定矩形的條件,老師們?cè)诮虒W(xué)中還可以適當(dāng)?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識(shí)進(jìn)行計(jì)算;例3是一道矩形的判定題,三個(gè)題目從不同的角度出發(fā),來(lái)綜合應(yīng)用矩形定義及判定等知識(shí)的.

  四、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?

  通過(guò)討論得到矩形的判定方法.

  矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.

 。ㄖ赋觯号卸ㄒ粋(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)

  五、例習(xí)題分析

  例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?

 。1)有一個(gè)角是直角的四邊形是矩形; ()

 。2)有四個(gè)角是直角的四邊形是矩形; ()

 。3)四個(gè)角都相等的四邊形是矩形; ()

 。4)對(duì)角線相等的四邊形是矩形; ()

 。5)對(duì)角線相等且互相垂直的四邊形是矩形; ()

 。6)對(duì)角線互相平分且相等的四邊形是矩形; ()

  (7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形; ()

  (8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;()

 。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形. ()

  指出:

 。╨)所給四邊形添加的條件不滿足三個(gè)的`肯定不是矩形;

  (2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2 (補(bǔ)充)已知 ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4 cm,求這個(gè)平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  AO= AC,BO= BD.

  ∵ AO=BO,

  AC=BD.

  ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  BC= (cm).

  例3 (補(bǔ)充) 已知:如圖(1), ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明.

  證明:∵ 四邊形ABCD是平行四邊形,

  AD∥BC.

  DAB+ABC=180.

  又 AE平分DAB,BG平分ABC ,

  EAB+ABG= 180=90.

  AFB=90.

  同理可證AED=BGC=CHD=90.

  四邊形EFGH是平行四邊形(有三個(gè)角是直角的四邊形是矩形).

  六、隨堂練習(xí)

  1.(選擇)下列說(shuō)法正確的是( ).

 。ˋ)有一組對(duì)角是直角的四邊形一定是矩形(B)有一組鄰角是直角的四邊形一定是矩形

 。–)對(duì)角線互相平分的四邊形是矩形 (D)對(duì)角互補(bǔ)的平行四邊形是矩形

  2.已知:如圖 ,在△ABC中,C=90, CD為中線,延長(zhǎng)CD到點(diǎn)E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形.

  七、課后練習(xí)

  1.工人師傅做鋁合金窗框分下面三個(gè)步驟進(jìn)行:

 、 先截出兩對(duì)符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;

 、 擺放成如圖②的四邊形,則這時(shí)窗框的形狀是 形,根據(jù)的數(shù)學(xué)道理是: ;

 、 將直角尺靠緊窗框的一個(gè)角(如圖③),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無(wú)縫隙時(shí)(如圖④),說(shuō)明窗框合格,這時(shí)窗框是 形,根據(jù)的數(shù)學(xué)道理是: ;

  2.在Rt△ABC中,C=90,AB=2AC,求A、B的度數(shù).

  初中數(shù)學(xué)教案設(shè)計(jì)17

  教學(xué)內(nèi)容

  24。2圓的切線(1)

  教學(xué)目標(biāo) 使學(xué)生掌握切線的識(shí)別方法,并能初步運(yùn)用它解決有關(guān)問(wèn)題

  通過(guò)切線識(shí)別方法的學(xué)習(xí),培養(yǎng)學(xué)生觀察、分析、歸納問(wèn)題的能力

  教學(xué)重點(diǎn) 切線的識(shí)別方法

  教學(xué)難點(diǎn) 方法的理解及實(shí)際運(yùn)用

  教具準(zhǔn)備 投影儀,膠片

  教學(xué)過(guò)程 教師活動(dòng) 學(xué)生活動(dòng)

 。ㄒ唬⿵(fù)習(xí) 情境導(dǎo)入

  1、復(fù)習(xí)、回顧直線與圓的三 種位置關(guān)系。

  2、請(qǐng)學(xué)生判斷直線和圓的位置關(guān)系。

  學(xué)生判斷的過(guò)程,提問(wèn):你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學(xué)生的回答,繼續(xù)提出 問(wèn)題:如何界定直線與圓是否只有一個(gè)公共點(diǎn)?教師指出,根據(jù)切線的定義可以識(shí)別一條直線是不是圓的切線,但有時(shí)使用定義識(shí)別很不方便,為此我們還要學(xué)習(xí)識(shí)別切 線的其它方法。(板書課題) 搶答

  學(xué)生總結(jié)判別方法

 。ǘ

  實(shí)踐與探索1:圓的切線的判斷方法 1、由上面 的復(fù)習(xí),我們可以把上節(jié)課所學(xué)的切線的定義作為識(shí)別切線的方法1——定義法:與圓只有一個(gè)公共點(diǎn)的直線是圓的切線。

  2、當(dāng)然,我們還可以由上節(jié)課所學(xué)的用圓心到直線的距離 與半徑 之間的關(guān)系來(lái)判斷直線與圓是否相切,即:當(dāng) 時(shí),直線與圓的位置關(guān)系是相切。以此作為識(shí)別切線的方法2——數(shù)量關(guān)系法:圓心到直線的距離等于半徑的直線是圓的切線 。

  3、實(shí)驗(yàn):作⊙O的半徑OA,過(guò)A作l⊥OA可以發(fā)現(xiàn):

 。1)直線 經(jīng)過(guò)半徑 的外端點(diǎn) ;

 。2)直線 垂直于半徑 。這樣我們就得到了從位 置上來(lái)判斷直線是圓的切線的方法3——位置關(guān)系法:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線。 理解并識(shí)記圓的切線的幾種方法,并比較應(yīng)用。

  通過(guò)實(shí)驗(yàn)探究圓的切線的位置判別方法,深入理解它的兩個(gè)要義。

  三、課堂練習(xí)

  思考:現(xiàn)在,任意給定一個(gè)圓,你能不能作出圓的切線?應(yīng)該如何作?

  請(qǐng)學(xué)生回顧作圖過(guò)程,切線 是如何作出來(lái)的?它滿足哪些條件? 引導(dǎo)學(xué)生總結(jié)出:①經(jīng)過(guò)半徑外端;②垂直于這條半徑。

  請(qǐng)學(xué)生繼續(xù)思考:這兩個(gè)條件缺少一個(gè)行不行? (學(xué)生畫出反例圖)

  (圖1) (圖2) 圖(3)

  圖(1)中直線 經(jīng)過(guò)半徑外端,但不與半徑垂直; 圖(2)中直線 與半徑垂直,但不經(jīng)過(guò)半徑外端。 從以上兩個(gè)反例可以看出,只滿足其中一個(gè)條件的直線不是圓的切線。

  最后引導(dǎo)學(xué)生分析,方法3實(shí)際上是從前一節(jié)所講的“圓 心到直線的距離等于半徑時(shí)直線和圓相切”這個(gè)結(jié)論直接得出來(lái)的,只是為了便于應(yīng)用把它改寫成“經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。 試驗(yàn)體會(huì)圓的位置判別方法。

  理解位置判別方法的兩個(gè)要素。

 。ㄋ模⿷(yīng)用與拓展 例1、如圖,已知直線AB經(jīng)過(guò)⊙O上的點(diǎn)A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?

  例2、如圖,線段AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)A、C,BAD=B=30,邊BD交圓于點(diǎn)D。BD是⊙ O的切線嗎?為什么?

  分析:欲證BD是⊙O的切線,由于BD過(guò)圓上點(diǎn)D,若連結(jié)OD,則BD過(guò)半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。

  教師板演,給出解答過(guò)程及格式。

  課堂練習(xí):課本練習(xí)1-4 先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質(zhì)區(qū)別。

  注意圓的切線的特征與識(shí)別的區(qū)別。

  (四)小結(jié)與作業(yè) 識(shí) 別一條直線是圓的切線,有 三種方法:

  (1)根據(jù)切線定義判定,即與圓只有一個(gè)公共點(diǎn)的直線是圓的切線;

 。2)根據(jù)圓心到直線的距離來(lái)判定,即與圓心的距離等于圓的半徑的直線是圓的切線;

  (3)根據(jù)直線的位置關(guān)系來(lái)判定,即經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的 切線,

  說(shuō)明一條直線是圓的切線,常常需要作輔助線,如果 已知直線過(guò)圓上某 一點(diǎn),則作出過(guò) 這一點(diǎn)的半徑,證明直線垂直于半徑即可(如例2)。

  各抒己見,談收獲。

 。ㄎ澹┌鍟O(shè)計(jì)

  識(shí)別一條直線是圓的切線,有三種方法: 例:

 。1 )根據(jù)切線定義判定,即與圓只有一個(gè)公共點(diǎn)的直線是圓的切線;

 。2)根據(jù)圓心到直線的距離來(lái)判定,即與圓心的距離等于圓的半徑的直線是圓 的切線;

 。3)根據(jù)直線的位置關(guān)系來(lái)判定,即經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的 切線,

  說(shuō)明一條直線是圓的.切線,常常需要作輔助線,如果已知直線過(guò)圓上某一點(diǎn),則作出過(guò) 這一點(diǎn)的半徑,證明 直線垂直于半徑

 。┙虒W(xué)后記

  教學(xué)內(nèi)容 24。2圓的切線(2) 課型 新授課 課時(shí) 執(zhí)教

  教學(xué)目標(biāo) 通過(guò)探究,使學(xué)生發(fā)現(xiàn)、掌握切線長(zhǎng)定理,并初步長(zhǎng)定理,并初步學(xué)會(huì)應(yīng)用切線長(zhǎng)定理解決問(wèn)題,同時(shí)通過(guò)從三角形紙片中剪出最大圓的實(shí)驗(yàn)的過(guò)程中發(fā)現(xiàn)三角形內(nèi)切圓的畫法,能用內(nèi)心的性質(zhì)解決問(wèn)題。

  教學(xué)重點(diǎn) 切線長(zhǎng)定理及其應(yīng)用,三角形的內(nèi)切圓的畫法和內(nèi)心的性質(zhì)。

  教學(xué)難點(diǎn) 三角形的內(nèi)心及其半徑的確定。

  教具準(zhǔn)備 投影儀,膠片

  教學(xué)過(guò)程 教師 活動(dòng) 學(xué)生活動(dòng)

 。ㄒ唬⿵(fù)習(xí)導(dǎo)入:

  請(qǐng)同學(xué)們回顧一下,如何判斷一條直線是圓的切線?圓的切線具有什么性質(zhì)?(經(jīng)過(guò)半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。)

  你能說(shuō)明以下這個(gè)問(wèn)題?

  如右圖所示,PA是 的平分線,AB是⊙O的切線,切點(diǎn)E,那么AC是⊙O的切線嗎?為什么?

  回顧舊知,看誰(shuí)說(shuō)的全。

  利用舊知,分析解決該問(wèn)題。

 。ǘ

  實(shí)踐與探索 問(wèn)題1、從圓外一點(diǎn)可以作圓的幾條切線?請(qǐng)同學(xué)們畫一畫。

  2、請(qǐng)問(wèn):這一點(diǎn) 與切點(diǎn)的 兩條線段的長(zhǎng)度相等嗎?為什么?

  3、切線長(zhǎng)的定義是什么?

  通過(guò)以 上幾個(gè)問(wèn)題的解決,使同學(xué)們得出以下的結(jié)論:

  從圓外一點(diǎn)可以引圓的兩條切線,切線長(zhǎng)相等。這一點(diǎn)與圓心的連線

  平分兩條切線的夾角。 在解決以上問(wèn)題時(shí),鼓勵(lì)同學(xué)們用不同的觀點(diǎn)、不同的知識(shí)來(lái)解決問(wèn)題,它既可以用書上闡述的對(duì)稱的觀點(diǎn)解決,也可以用以前學(xué)習(xí)的其他知識(shí)來(lái)解決問(wèn)題。

  (三)拓展與應(yīng)用 例:右圖,PA、PB是,切點(diǎn)分別是A、B,直線EF也是⊙O的切線,切點(diǎn)為P,交PA、PB為E、F點(diǎn),已知 , ,(1)求 的周長(zhǎng);(2)求 的度數(shù)。

  解:(1)連結(jié)PA、PB、EF是⊙O的切線

  所以 , ,

  所以 的周長(zhǎng) (2)因?yàn)镻A、PB、EF是⊙O的切線

  所以 , ,,

  所以

  所以

  畫圖分析探究,教學(xué)中應(yīng)注重基本圖形的教學(xué),引導(dǎo)學(xué)生發(fā)現(xiàn)基本圖形,應(yīng)用基本圖形解決問(wèn)題。

  (四)小結(jié)與作業(yè) 談一下本節(jié)課的 收獲 ? 各抒己見,看誰(shuí) 說(shuō)得最好

 。ㄎ澹┌鍟O(shè)計(jì)

  切線(2)

  切線長(zhǎng)相等 例:

  切線長(zhǎng)性質(zhì)

  點(diǎn)與圓心連 線平分兩切線夾角

  (六)教學(xué)后記

  初中數(shù)學(xué)教案設(shè)計(jì)18

  一、教學(xué)目標(biāo)

 。ㄒ唬。及時(shí)鞏固所學(xué)知識(shí);

 。ǘ。培養(yǎng)學(xué)生觀察能力,提高他們分析問(wèn)題和解決問(wèn)題的能力;

 。ㄈ。使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟。

  三、教學(xué)過(guò)程

  主要為習(xí)題處理,由淺入深,使學(xué)生把所學(xué)知識(shí)系統(tǒng)化。

  主要由學(xué)生完成,老師引導(dǎo)。

  習(xí)題3。1中,1。2。3都是基礎(chǔ)知識(shí)題,讓學(xué)生到黑板上做幾道有代表意義的題,然后老師對(duì)錯(cuò)的給與糾正,讓學(xué)生對(duì)基礎(chǔ)知識(shí)題的正確把握。

  主要針對(duì)學(xué)生比較難懂的應(yīng)用題來(lái)講解;

  習(xí)題5,把1400元獎(jiǎng)學(xué)金按照兩種獎(jiǎng)項(xiàng)獎(jiǎng)給22名學(xué)生,其中一等獎(jiǎng)每人200元,二等獎(jiǎng)每人50元,獲得一等獎(jiǎng)的學(xué)生有多少人?

  分析:設(shè)獲得一等獎(jiǎng)的學(xué)生有X人,由已知條件得:

  X×200+(22—X)×50=1400

  本題要讓學(xué)生理解這種設(shè)未知數(shù)建立方程的思想,設(shè)獲得一等獎(jiǎng)的學(xué)生有X人,那么二等獎(jiǎng)的人數(shù)就是22—X。

  習(xí)題6,種一批樹苗,如果每人種10棵,則剩6棵樹苗未種,如果每人種12棵,則缺少6棵苗,有多少人種數(shù)?

  分析:兩種方法種樹苗,等式就是總樹苗相等,設(shè)有X人種樹,

  那么:10X+6=12X—6

  所以找到等式就是列出方程的重要一步。

  習(xí)題7,一輛汽車已經(jīng)行駛了12000千米,計(jì)劃每月再行駛800千米,幾個(gè)月后這輛汽車將行駛20800千米?

  分析:由已經(jīng)行駛了12000千米,計(jì)劃每月再行駛800千米,最后達(dá)到20800千米,我們?cè)O(shè)X個(gè)月后達(dá)到目標(biāo),列出等式

  12000+800X=20800

  總之,找出他們之間存在的相等關(guān)系就是解決問(wèn)題的關(guān)鍵。

  通過(guò)系統(tǒng)的學(xué)習(xí),讓學(xué)生的.綜合運(yùn)用能力提高,對(duì)拓廣探索中的題目老師要細(xì)心講解,因?yàn)閷W(xué)生對(duì)這些題的理解有困難。

  四、課堂總結(jié)

  通過(guò)大量的練習(xí),及時(shí)鞏固所學(xué)知識(shí),使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題。

  五、作業(yè)布置

  習(xí)題3。1第7、8題。

  初中數(shù)學(xué)教案設(shè)計(jì)19

  教學(xué)目標(biāo):

  教學(xué)目標(biāo):

  1、 會(huì)畫已知點(diǎn)關(guān)于已知直線 的對(duì)稱點(diǎn),會(huì)畫已知線段的對(duì)稱線段,會(huì)畫已知三角形的對(duì)稱三角形。

  2、 經(jīng)歷探索軸對(duì)稱的性質(zhì)的活動(dòng)過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):作已知圖形的軸對(duì)稱圖形的一般步驟。

  教學(xué)難點(diǎn):怎樣確定已知圖形的關(guān)鍵點(diǎn)并根據(jù)這些點(diǎn)作出對(duì)稱圖形。

  學(xué)習(xí)過(guò)程:

  一.學(xué)前準(zhǔn)備

  1、完成課本第10頁(yè)的操作,即圖1—6,并將你完成的操作帶到課堂上來(lái)。

  2、思考:

  下列圖形中,哪些是軸對(duì)稱圖形,請(qǐng)把它們找出來(lái),畫出它們所有的對(duì)稱軸。

  3、請(qǐng)你在下圖的方格內(nèi),設(shè)計(jì)一個(gè)軸對(duì)稱圖形。

  二.自學(xué)、合作探究

 。ㄒ唬┳詫W(xué)、相信自己(書本)

  實(shí)踐、操作:

  1、思考:如圖1-9, 3點(diǎn)都在方格紙的格點(diǎn)位置上。請(qǐng)你再找一個(gè)格點(diǎn) ,使圖中的4點(diǎn)組成一個(gè)軸對(duì)稱圖形。

  2、如果直線 外有一點(diǎn) ,那么怎樣畫出點(diǎn) 關(guān)于直線 的對(duì)稱點(diǎn) ?

  問(wèn)題一:畫點(diǎn)關(guān)于直線 的對(duì)稱點(diǎn) 的方法,并說(shuō)明道理。

  問(wèn)題二:怎樣畫已知線段的對(duì)稱線段?怎樣畫已知三角形的對(duì)稱三角形?說(shuō)說(shuō)你的.想法和依據(jù)。

 。ǘ┧妓、交流(書本例題練習(xí)難)

  3、分別畫出圖1-10(1)、(2)、(3)中線段 關(guān)于直線 對(duì)稱的線段 。

  4、 分別在圖圖1-10(1)、(2)、(3)的直線 上取一點(diǎn) ,并畫 關(guān)于直線 對(duì)稱的 .

  (三)應(yīng)用、探究(難度大綜合縱橫思考)

  例題講解

  例題1、如圖所示,要在街道旁修建一個(gè)牛奶站,向居民區(qū)A、B提供牛奶,牛奶站應(yīng)建在什么地方,才能使A、B到它的距離之和最短?

  例題1

  例題2

  三.學(xué)習(xí)體會(huì)(空)

  四.自我測(cè)試(書本練習(xí))

  1.練習(xí)1 下列數(shù)字圖象都是由鏡中看到的,請(qǐng)分別寫出它們所對(duì)應(yīng)的實(shí)際數(shù)字,并說(shuō)明數(shù)字圖象與鏡面的位置關(guān)系。

  1、如圖1,線段AB與A’B’關(guān)于直線l對(duì)稱,

 、胚B接AA’交直線l于點(diǎn)O,再連接OB、OB’。

  ⑵把紙沿直線l對(duì)折,重合的線段有: 。

 、且?yàn)椤鱋AB和△OA’B’關(guān)于直線l , 所以△OAB -△OA’B’,直線l垂直平分線段 ,∠ABO=∠ , ∠AO’B=∠ 。

  圖 1 圖 2 圖3

  2、如圖2,三角形Ⅰ的兩個(gè)頂點(diǎn)分別在直線l1和l2,且l1⊥l2,

 、女嬋切微蚺c三角形Ⅰ關(guān)于l1對(duì)稱;

 、飘嬋切微笈c三角形Ⅱ關(guān)于l2對(duì)稱;

 、钱嬋切微襞c三角形Ⅲ關(guān)于l1對(duì)稱;

 、人嫷娜切微襞c三角形Ⅰ成軸對(duì)稱嗎?

  3、如圖3,四邊形ABCD是長(zhǎng)方形彈子球臺(tái)面,有黑白兩球分別位于E、F兩點(diǎn)位置上,試問(wèn)怎樣撞擊黑球E,才能使黑球先碰撞臺(tái)邊AB反彈后再擊中白球F?

  初中數(shù)學(xué)教案設(shè)計(jì)20

  教學(xué)目標(biāo):

  1、知識(shí)與技能:

 、、在具體的現(xiàn)實(shí)情境中,認(rèn)識(shí)一個(gè)角的余角和補(bǔ)角,掌握余角和補(bǔ)角的性質(zhì)。

 、、了解方位角,能確定具體物體的方位。

  2、過(guò)程與方法:

  進(jìn)一步提高學(xué)生的抽象概括能力,發(fā)展空間觀念和知識(shí)運(yùn)用能力,學(xué)會(huì)簡(jiǎn)單的邏輯推理,并能對(duì)問(wèn)題的結(jié)論進(jìn)行合理的猜想。

  3、情感態(tài)度與價(jià)值觀:

  體會(huì)觀察、歸納、推理對(duì)數(shù)學(xué)知識(shí)中獲取數(shù)學(xué)猜想和論證的重要作用,初步數(shù)學(xué)中推理的嚴(yán)謹(jǐn)性和結(jié)論的確定性,能在獨(dú)立思考和小組交流中獲益。

  重、難點(diǎn)及關(guān)鍵:

  1、重點(diǎn):認(rèn)識(shí)角的互余、互補(bǔ)關(guān)系及其性質(zhì),確定方位是本節(jié)課的重點(diǎn)。

  2、難點(diǎn):通過(guò)簡(jiǎn)單的推理,歸納出余角、補(bǔ)角的性質(zhì),并能用規(guī)范的語(yǔ)言描述性質(zhì)是難點(diǎn)。

  3、關(guān)鍵:了解推理的意義和推理過(guò)程是掌握性質(zhì)的關(guān)鍵。

  教學(xué)過(guò)程:

  一、引入新課:

  讓學(xué)生觀察意大利著名建筑比薩斜塔。

  比薩斜塔建于1173年,工程曾間斷了兩次很長(zhǎng)的時(shí)間,歷經(jīng)約二百年才完工。設(shè)計(jì)為垂直建造,但是在工程開始后不久便由于地基不均勻和土層松軟而傾斜。

  二、新課講解:

  1、探究互為余角的定義:

  如果兩個(gè)角的和是90(直角),那么這兩個(gè)角叫做互為余角,其中一個(gè)角是另一個(gè)角的余角。即:1是2的余角或2是1的余角。

  2、練習(xí)⑴:

  圖中給出的各角,那些互為余角?

  3、探究互為補(bǔ)角的定義:

  如果兩個(gè)角的`和是180(平角),那么這兩個(gè)角叫做互為補(bǔ)角,其中一個(gè)角是另一個(gè)角的補(bǔ)角。即:3是4的補(bǔ)角或4是3的補(bǔ)角。

  4、練習(xí)⑵:

 。1)圖中給出的各角,那些互為補(bǔ)角?

 。2)填下列表:

  a的余角 a的補(bǔ)角

  5

  32

  45

  77

  6223

  x

  結(jié)論:同一個(gè)銳角的補(bǔ)角比它的余角大90。

 。3)填空:

  ①70的余角是 ,補(bǔ)角是 。

 、赼(90)的它的余角是 ,它的補(bǔ)角是 。

  重要提醒:ⅰ(如何表示一個(gè)角的余角和補(bǔ)角)

  銳角a的余角是(90a )

  a的補(bǔ)角是(180a )

 、⒒ビ嗪突パa(bǔ)是兩個(gè)角的數(shù)量關(guān)系,與它們的位置無(wú)關(guān)。

  5、講解例題:

  例1:若一個(gè)角的補(bǔ)角等于它的余角4倍,求這個(gè)角的度數(shù)。

  解: 設(shè)這個(gè)角是x ,則它的補(bǔ)角是( 180-x),余角是(90-x) 。

  根據(jù)題意得:

 。180-x)= 4 (90-x)

  解之得: x =60

  答:這個(gè)角的度數(shù)是60 。

  6、練習(xí)⑶:

  一個(gè)角的補(bǔ)角是它的3倍,這個(gè)角是多少度?

  7、探究補(bǔ)角的性質(zhì):

  如圖1 與2互補(bǔ),3 與4互補(bǔ) ,如果1=3,那么2與4相等嗎?為什么?

  教師活動(dòng):操作多媒體演示。

  學(xué)生活動(dòng):觀察圖形的運(yùn)動(dòng),得出結(jié)果:4

  補(bǔ)角性質(zhì):同角或等角的補(bǔ)角相等

  教師活動(dòng):向?qū)W生說(shuō)明,以上從觀察圖形得到的結(jié)論,還可以從理論上說(shuō)明其理由。

  ∵ 1 +2=180, 3 +4=180

  2=180-1 , 4=180- 3

  ∵ 1 =3

  180-1 =180- 3

  即:2 =4

  8、探究余角的性質(zhì):

  如圖1 與2互余,3 與4互余 ,如果1=3,那么2與4相等嗎?為什么?

  教師活動(dòng):操作多媒體演示。

  學(xué)生活動(dòng):觀察圖形的運(yùn)動(dòng),得出結(jié)果:4

  余角性質(zhì):同角或等角的余角相等

  教師活動(dòng):向?qū)W生說(shuō)明,以上從觀察圖形得到的結(jié)論,還可以從理論上說(shuō)明其理由。

  ∵ 1 +2=90, 3 +4=90

  2=90-1 , 4=90- 3

  ∵ 1 =3

  90-1 =90- 3

  即:2 =4

  9、講解例題:

  例2:如圖,AOB=90COD=EOD=90,C,O,E在一條直線上,且4,請(qǐng)說(shuō)出1與3之間的關(guān)系?并試著說(shuō)明理由?

  解:3

  ∵ 2= COD=90

  3+2= AOB=90

  3 (等角的余角相等)

  10、練習(xí)⑷:

  如圖AOB = 90 COD = 90 則1與2是什么關(guān)系?

  11、講解方位角:

 。1)認(rèn)識(shí)方位:

  正東、正南、正西、正北、東南、

  西南、西北、東北。

  (2)找方位角:

 、∫业貙(duì)甲地的方位角 ⅱ甲地對(duì)乙地的方位角

  12、講解例題:

  例3:選擇題:

  (1)A看B的方向是北偏東21,那么B看A的方向( )

  A:南偏東69 B:南偏西69 C:南偏東21 D:南偏西21

  (2)如圖,下列說(shuō)法中錯(cuò)誤的是( )

  A: OC的方向是北偏東60

  B: OC的方向是南偏東60

  C: OB的方向是西南方向

  D: OA的方向是北偏西22

  (3)在點(diǎn)O 北偏西60的某處有一點(diǎn)A,在點(diǎn)O南偏西20的某處有一點(diǎn)B,則AOB的度數(shù)是( )

  A:100 B:70 C:180 D:140

  例4:如圖.貨輪O在航行過(guò)程中,發(fā)現(xiàn)燈塔A在它南偏東60的方向上,同時(shí),在它北偏東40,南偏西10,西北(即北偏西45)方向上又分別發(fā)現(xiàn)了客輪B,貨輪C和海島D.仿照表示燈塔方位的方法畫出表示客輪B,貨輪C和海島D方向的射線.

  三、課堂小結(jié):

  1、本節(jié)課學(xué)習(xí)了余角和補(bǔ)角,并通過(guò)簡(jiǎn)單的推理,得到出了余角和補(bǔ)角的性質(zhì)。

  2、了解方位角,學(xué)會(huì)了確定物體運(yùn)動(dòng)的方向。

  四、課外作業(yè):

  1、課本第114頁(yè):9、11、12題。

  2、學(xué)習(xí)指要第78-79頁(yè):訓(xùn)練二和訓(xùn)練三。

  課后反思:

【初中數(shù)學(xué)教案設(shè)計(jì)】相關(guān)文章:

初中數(shù)學(xué)教案設(shè)計(jì)09-29

初中數(shù)學(xué)《矩形》的教案設(shè)計(jì)09-03

初中數(shù)學(xué)教案設(shè)計(jì)08-27

初中數(shù)學(xué)整式的乘法教案設(shè)計(jì)09-02

初中數(shù)學(xué)《定義與命題》教案設(shè)計(jì)09-04

初中數(shù)學(xué)《等腰梯形的判定》教案設(shè)計(jì)08-26

初中數(shù)學(xué)教案設(shè)計(jì)15篇02-09

初中數(shù)學(xué)《圖形的放大與縮小》教案設(shè)計(jì)09-03

初中數(shù)學(xué)余角和補(bǔ)角教案設(shè)計(jì)09-03