亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數學公開課教案

時間:2023-02-20 11:40:33 初中數學教案 我要投稿

初中數學公開課教案(集合7篇)

  在教學工作者實際的教學活動中,時常要開展教案準備工作,編寫教案助于積累教學經驗,不斷提高教學質量。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家整理的初中數學公開課教案,歡迎閱讀與收藏。

初中數學公開課教案(集合7篇)

初中數學公開課教案1

  教學目標:

  1、會用待定系數法求反比例函數的解析式。

  2、通過實例進一步加深對反比例函數的認識,能結合具體情境,體會反比例函數的意義,理解比例系數的具體的意義。

  3、會通過已知自變量的值求相應的反比例函數的值。運用已知反比例函數的值求相應自變量的值解決一些簡單的問題。

  重點:用待定系數法求反比例函數的解析式。

  難點:例3要用科學知識,又要用不等式的知識,學生不易理解。

  教學過程:

  一。復習

  1、反比例函數的定義:

  判斷下列說法是否正確(對‖√‖,錯‖3‖)

 。1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數。(2)圓的面積公式s??r2中,s與r成正比例。(3)矩形的長為a,寬為b,周長為C,當C為常量時,a是b的反比例函數。方形的邊長為x,高為y,當其體積V為常量時,y是x的反比例函數。(4)一個正四棱柱的底面正

  定時,商和除數成反比例。(5)當被除數(不為零)一

 。6)計劃修建鐵路1200km,則鋪軌天數y(d)是每日鋪軌量x(km/d)的反比例函數。

  2、思考:如何確定反比例函數的解析式?

  (1)已知y是x的.反比例函數,比例系數是3,則函數解析式是_______

 。2)當m為何值時,函數4是反比例函數,并求出其函數解析式.y?2m?2關鍵是確定比例系數!x

  二。新課

  1、例2:已知變量y與x成反比例,且當x=2時y=9,寫出y與x之間的函數解析式和自變量的取值范圍。小結:要確定一個反比例函數y?k的解析式,只需求出比例系數k。如果已知一對自變量與函數的對應值,x

  3時,y=2,求這個函數的解析式和自變量的取值范圍。4就可以先求出比例系數,然后寫出所要求的反比例函數。2.練習:已知y是關于x的反比例函數,當x=?

  3、說一說它們的求法:

 。1)已知變量y與x-5成反比例,且當x=2時y=9,寫出y與x之間的函數解析式。

  (2)已知變量y-1與x成反比例,且當x=2時y=9,寫出y與x之間的函數解析式。

  4、例3、設汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。

 。1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關于R的函數解析式,并說明比例系數的實際意義。

 。2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發(fā)生什么變化?

  在例3的教學中可作如下啟發(fā):

  (1)電流、電阻、電壓之間有何關系?

 。2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數關系?

 。3)前燈的亮度取決于哪個變量的大小?如何決定?

  先讓學生嘗試練習,后師生一起點評。

  三。鞏固練習:

  1、當質量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3

 。1)求p與V的函數關系式,并指出自變量的取值范圍。

  (2)求V=9m3時,二氧化碳的密度。

  四。拓展:

  1、已知y與z成正比例,z與x成反比例,當x=-4時,z=3,y=-4.求:

  (1)Y關于x的函數解析式;

 。2)當z=-1時,x,y的值。

  2、已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的

  值都等于10,求y與x之間的函數關系。

  五。交流反思

  求反比例函數的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數關系,如例2;另一種是變量之間的關系由已學的數量關系直接給出,如例3中的I?

  六。布置作業(yè):P4B組

初中數學公開課教案2

  問題描述:

  初中數學教學案例

  初中的,隨便那個年級。20xx字。案例和反思

  1個回答 分類:數學 20xx-11-30

  問題解答:

  我來補答

  2.3 平行線的性質

  一、教材分析:

  本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分。

  二、教學目標:

  知識與技能:掌握平行線的性質,能應用性質解決相關問題。

  數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。

  解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。

  情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神。

  三、教學重、難點:

  重點:平行線的性質

  難點:“性質1”的探究過程

  四、教學方法:

  “引導發(fā)現(xiàn)法”與“動像探索法”

  五、教具、學具:

  教具:多媒體課件

  學具:三角板、量角器。

  六、教學媒體:

  大屏幕、實物投影

  七、教學過程:

 。ㄒ唬﹦(chuàng)設情境,設疑激思:

  1.播放一組幻燈片。內容:①火車行駛在鐵軌上;②游泳池;③橫格紙。

  2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

  學生活動:

  思考回答。①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

  教師:首先肯定學生的回答,然后提出問題。

  問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?

  引出課題——平行線的性質。

 。ǘ⿺敌谓Y合,探究性質

  1.畫圖探究,歸納猜想

  任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖)。

  問題一:指出圖中的同位角,并度量這些角,把結果填入下表:

  第一組

  第二組

  第三組

  第四組

  同位角

  ∠1

  ∠5

  角的度數

  數量關系

  學生活動:畫圖——度量——填表——猜想

  結論:兩直線平行,同位角相等。

  問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?

  學生:探究、討論,最后得出結論:仍然成立。

  2.教師用《幾何畫板》課件驗證猜想

  3.性質1.兩條直線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)

  (三)引申思考,培養(yǎng)創(chuàng)新

  問題三:請判斷內錯角、同旁內角各有什么關系?

  學生活動:獨立探究——小組討論——成果展示。

  教師活動:引導學生說理。

  因為a‖b 因為a‖b

  所以∠1=∠2 所以∠1=∠2

  又 ∠1=∠3 又 ∠1+∠4=180°

  所以∠2=∠3 所以∠2+∠4=180°

  語言敘述:

  性質2 兩條直線被第三條直線所截,內錯角相等。

 。▋芍本平行,內錯角相等)

  性質3 兩條直線被第三條直線所截,同旁內角互補。

 。▋芍本平行,同旁內角互補)

 。ㄋ模⿲嶋H應用,優(yōu)勢互補

  1、(搶答)

 。1)如圖,平行線AB、CD被直線AE所截

 、偃簟1 = 110°,則∠2 = °。理由:。

 、谌簟1 = 110°,則∠3 = °。理由:。

 、廴簟1 = 110°,則∠4 = °。理由:。

 。2)如圖,由AB‖CD,可得( )

 。ˋ)∠1=∠2 (B)∠2=∠3

  (C)∠1=∠4 (D)∠3=∠4

 。3)如圖,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=( )

 。ˋ) 180°(B)270° (C)360° (D)540°

 。4)誰問誰答:如圖,直線a‖b,

  如:∠1=54°時,∠2= 。

  學生提問,并找出回答問題的同學。

  2、(討論解答)

  如圖是一塊梯形鐵片的'殘余部分,量得∠A=100°,

  ∠B=115°,求梯形另外兩角分別是多少度?

 。ㄎ澹└爬ù鎯Γㄐ〗Y)

  1.平行線的性質1、2、3;

  2.用“運動”的觀點觀察數學問題;

  3.用數形結合的方法來解決問題。

  (六)作業(yè) 第69頁 2、4、7.

  八、教學反思:

 、俳痰霓D變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。在引導學生畫圖、測量、發(fā)現(xiàn)結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數學問題,體驗發(fā)現(xiàn)的樂趣。

 、趯W的轉變:學生的角色從學會轉變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。

 、壅n堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

初中數學公開課教案3

  一、教材分析

  A、教材的地位與作用:①本節(jié)教材是初三代數第十四章統(tǒng)計初步第二節(jié),它是上節(jié)平均數的延續(xù)。平均數、眾數及中位數都是描述一組數據的集中趨勢的特征數,但描述的角度和適用范圍有所不同。本節(jié)教學使學生進一步體會用樣本估計總體的統(tǒng)計思想方法,形成運用數學知識解決簡單應用問題的能力。學好本節(jié)課,也將為本章后繼內容的學習打下良好的基礎。②本節(jié)內容在中考命題中也占有重要地位,如:20xx年河南中考選擇題16題.20xx年河南中考選擇題19題,1997年河南中考選擇題3題,1996年河南中考填空題9題。“20xx一高英才杯” 選擇題3題。

  B.教學目標

  1、知識目標:

 、偈箤W生理解眾數與中位數的意義。

 、跁笠唤M數據的眾數和中位數。

  2、能力目標:培養(yǎng)學生的觀察能力、計算能力。

  3、德育目標:

 、倥囵B(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣。

 、跐B透數學知識來源于生活,反過來又服務于生活的思想。

  C、重點·難點·疑點

  1.教學重點:定義的理解及求一組數據的眾數與中位數。

  2.教學難點:

 、倨骄鶖、眾數、中位數這三數之間的區(qū)別與聯(lián)系。

 、谂紨祩數據的中位數的求法。

  3.教學疑點:學生容易把一組數據中出現(xiàn)次數最多的數據的次數當做眾數。

  二、教法設計

  問題情景教學法

  三、教學過程

  【引導回顧 搭建橋梁】

  ①怎樣求一組數據的平均數?

  ②平均數與一組數據中的每個數據均有關系嗎?

  這節(jié)課,我們將進一步學習另兩個反映一組數據的集中趨勢的特征數——眾數和中位數。

  14.2眾數與中位數(課件)

  【創(chuàng)設情境 探究新知】

  問題情景一:一家童鞋店在一段時間內銷售了某種童鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:

  鞋的尺碼(單位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  銷售量(單位:雙)

  1

  2

  5

  11

  7

  3

  1

  在這個問題里,如果你是鞋店老板,你最關心的是什么?

  問題情景二:某面包房,在一天內銷售面包100個,各類面包銷售量如下表:

  面包種類

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  銷售量(單位:個)

  10

  15

  25

  5

  15

  30

  在這個問題中,如果你是店主,你最關心的是什么?

  定義:在一組數據中,出現(xiàn)次數最多的數據叫做這組數據的眾數。

  同時要強調眾數的功能,即“當一組數據中不少數據多次重復出現(xiàn)時,常用眾數來描述這組數據的集中趨勢”。

  注意:①.眾數是一組數據中出現(xiàn)次數最多的數據,是一組數據中的原數據,而不是相應的次數。例如:問題一中眾數是(21厘米),不要把21厘米的鞋的銷售量11當作所求的眾數。

  ②一組數據中的眾數有時不只一個,如數據2、3、-1、2、1、3中,2和3都出現(xiàn)了2次,它們都是這組數據的眾數。

  例1、在一次英語口試中,20名學生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求這次英語口試中學生得分的眾數.

  請用觀察法找出這組數據中哪些數據出現(xiàn)的頻數較多,從而進一步找出它的眾數;也可仿照問題一畫表格找出眾數。強調一下這個結論反映了得80分的學生最多。

  問題情景三:在初三數學競賽中,我班其中5名學生的成績從低分到高分排列名次是: 55 57 61 62 98,其中哪一個數據能用來描述這組數據的集中趨勢?

  觀察在這5個數據中,前4個數據的大小比較接近,最后1個數據與它們的差異較大。這時如果用其中最中間的數據61來描述這組數據的集中趨勢,可以不受個別數據較大變動的影響。

  中位數定義:將一組數據按大小依次排列,把處在最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。

  注意:1.求中位數要將一組數據按大小順序,而不必計算,顧名思義,中位數就是位置處于最中間的一個數(或最中間的兩個數的平均數),排序時,從小到大或從大到小都可以。

  2.在數據個數為奇數的情況下,中位數是這組數據中的一個數據;如情景三的中位數是61。但在數據個數為偶數的情況下,其中位數是最中間兩個數據的平均數,它不一定與這組數據中的某個數據相等。

  例2 10名工人某天生產同一零件,生產的件數是:

  15 17 14 10 15 19 17 16 14 12

  求這一一天10名工人生產的零件的中位數.

  請觀察分析后,自解.

  【誘向深入 拓展思維】

  例3在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績如下表所示:

  成績(單位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人數

  2

  3

  2

  3

  4

  1

  1

  1

  分別求這些運動員成績的眾數,中位數與平均數(平均數的計算結果保留到小數點后第2位)。

  觀察表格,分析回答下列問題:①表中國共產黨有多少個數據?其中哪個數據出現(xiàn)的次數最多?這組數據的眾數是什么?說明什么?

 、诒砝锏'17個數據可看成是按什么順序排列的?其中第幾個數是最中間的數據?這組數據的中位數是多少?說明什么?

 、劭蛇x用哪個公式求這組數據的平均數?所求得的平均數能說明什么?這樣分析例題,可使學生加深理解平均數、眾數、中位數的概念之間的聯(lián)系與區(qū)別,體會到這三個數在描述一組數據集中趨勢時的不同角度。

  【展示應用 評價自我】

  補充練習1、已知一組數據10,10,x,8(由大到小排列)的中位數與平均數相等,求x值及這組數據的中位數。

  解:∵10,10,x,8的中位數與平均數相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴這組數據中的中位數是9。

  補充練習2、當5個整數從小到大排列,其中位數是4,如果這個數集的唯一眾數是6,則這5個整數可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:設這5個整數按從小到大排列為a1,a2,a3,a4,a5,由于中位數是4,所以a3=4,又6是唯一眾數,所以a4=a5=6,此時,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:選(A)

  3、教材P159中1、2、3

  【鏈接知識 歸納小結】

  1.知識小結:這節(jié)課我們學習了眾數、中位數的概念,了解了它們在描述一組數據集中趨勢時的不同角度和適用范圍。

  2.方法小結:①眾數由所給數據可直接求出,(一組數據中的眾數可能不止一個,眾數是一組數據中出現(xiàn)的次數最多的數據,而不是該數據出現(xiàn)的次數.如果有兩個數據出現(xiàn)的次數相同,并且比其他數據出現(xiàn)次數都多,那么這兩個數據都是這組數據的眾數)。②求中位數時,首先要先排序(從小到大或從大到小),然后計算中位數的序號,分數據為奇數個與偶數個兩種來求.(既找出最中間的一個數據或最中間兩個數并算出它們的平均數)。

  3.知識網絡:平均數、眾數及中位數都是描述一組數據的集中趨勢的特征數,但描述的角度和適用范圍有所不同。平均數的大小與一組數據里的每個數據均有關系,其中任何數據的變動都會相應引起平均數的變動;眾數著眼于對各數據出現(xiàn)的頻數的考察,其大小只與這組數據中的部分數據有關。當一組數據中有不少數據多次重復出現(xiàn)時,其眾數往往是我們關心的一種統(tǒng)計量;中位數則僅與數據的排列位置有關,某些數據的變動對它的中位數沒有影響。當一組數據中的個別數據變動較大時,可用它來描述其集中趨勢。

  【布置作業(yè)】教材P163A組1、2、3,B組。

  【板書設計】

  14.2 眾數與中位數

  1.定義 例1 例2 例3

  眾數: 練習1 練習2

  中位數

  一、教材分析

  A、教材的地位與作用:①本節(jié)教材是初三代數第十四章統(tǒng)計初步第二節(jié),它是上節(jié)平均數的延續(xù)。平均數、眾數及中位數都是描述一組數據的集中趨勢的特征數,但描述的角度和適用范圍有所不同。本節(jié)教學使學生進一步體會用樣本估計總體的統(tǒng)計思想方法,形成運用數學知識解決簡單應用問題的能力。學好本節(jié)課,也將為本章后繼內容的學習打下良好的基礎。②本節(jié)內容在中考命題中也占有重要地位,如:20xx年河南中考選擇題16題.20xx年河南中考選擇題19題,1997年河南中考選擇題3題,1996年河南中考填空題9題!20xx一高英才杯” 選擇題3題。

  B.教學目標

  1、知識目標:

 、偈箤W生理解眾數與中位數的意義。

 、跁笠唤M數據的眾數和中位數。

  2、能力目標:培養(yǎng)學生的觀察能力、計算能力。

  3、德育目標:

 、倥囵B(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣。

 、跐B透數學知識來源于生活,反過來又服務于生活的思想。

  C、重點·難點·疑點

  1.教學重點:定義的理解及求一組數據的眾數與中位數。

  2.教學難點:

 、倨骄鶖怠⒈姅、中位數這三數之間的區(qū)別與聯(lián)系。

  ②偶數個數據的中位數的求法。

  3.教學疑點:學生容易把一組數據中出現(xiàn)次數最多的數據的次數當做眾數。

  二、教法設計

  問題情景教學法

  三、教學過程

  【引導回顧 搭建橋梁】

  ①怎樣求一組數據的平均數?

 、谄骄鶖蹬c一組數據中的每個數據均有關系嗎?

  這節(jié)課,我們將進一步學習另兩個反映一組數據的集中趨勢的特征數——眾數和中位數。

  14.2眾數與中位數(課件)

  【創(chuàng)設情境 探究新知】

  問題情景一:一家童鞋店在一段時間內銷售了某種童鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:

  鞋的尺碼(單位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  銷售量(單位:雙)

  1

  2

  5

  11

  7

  3

  1

  在這個問題里,如果你是鞋店老板,你最關心的是什么?

  問題情景二:某面包房,在一天內銷售面包100個,各類面包銷售量如下表:

  面包種類

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  銷售量(單位:個)

  10

  15

  25

  5

  15

  30

  在這個問題中,如果你是店主,你最關心的是什么?

  定義:在一組數據中,出現(xiàn)次數最多的數據叫做這組數據的眾數。

  同時要強調眾數的功能,即“當一組數據中不少數據多次重復出現(xiàn)時,常用眾數來描述這組數據的集中趨勢”。

  注意:①.眾數是一組數據中出現(xiàn)次數最多的數據,是一組數據中的原數據,而不是相應的次數。例如:問題一中眾數是(21厘米),不要把21厘米的鞋的銷售量11當作所求的眾數。

 、谝唤M數據中的眾數有時不只一個,如數據2、3、-1、2、1、3中,2和3都出現(xiàn)了2次,它們都是這組數據的眾數。

  例1、在一次英語口試中,20名學生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求這次英語口試中學生得分的眾數.

  請用觀察法找出這組數據中哪些數據出現(xiàn)的頻數較多,從而進一步找出它的眾數;也可仿照問題一畫表格找出眾數。強調一下這個結論反映了得80分的學生最多。

  問題情景三:在初三數學競賽中,我班其中5名學生的成績從低分到高分排列名次是: 55 57 61 62 98,其中哪一個數據能用來描述這組數據的集中趨勢?

  觀察在這5個數據中,前4個數據的大小比較接近,最后1個數據與它們的差異較大。這時如果用其中最中間的數據61來描述這組數據的集中趨勢,可以不受個別數據較大變動的影響。

  中位數定義:將一組數據按大小依次排列,把處在最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。

  注意:1.求中位數要將一組數據按大小順序,而不必計算,顧名思義,中位數就是位置處于最中間的一個數(或最中間的兩個數的平均數),排序時,從小到大或從大到小都可以。

  2.在數據個數為奇數的情況下,中位數是這組數據中的一個數據;如情景三的中位數是61。但在數據個數為偶數的情況下,其中位數是最中間兩個數據的平均數,它不一定與這組數據中的某個數據相等。

  例2 10名工人某天生產同一零件,生產的件數是:

  15 17 14 10 15 19 17 16 14 12

  求這一天10名工人生產的零件的中位數.

  請觀察分析后,自解.

  【誘向深入 拓展思維】

  例3在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績如下表所示:

  成績(單位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人數

  2

  3

  2

  3

  4

  1

  1

  1

  分別求這些運動員成績的眾數,中位數與平均數(平均數的計算結果保留到小數點后第2位)。

  觀察表格,分析回答下列問題:①表中國共產黨有多少個數據?其中哪個數據出現(xiàn)的次數最多?這組數據的眾數是什么?說明什么?

 、诒砝锏17個數據可看成是按什么順序排列的?其中第幾個數是最中間的數據?這組數據的中位數是多少?說明什么?

 、劭蛇x用哪個公式求這組數據的平均數?所求得的平均數能說明什么?這樣分析例題,可使學生加深理解平均數、眾數、中位數的概念之間的聯(lián)系與區(qū)別,體會到這三個數在描述一組數據集中趨勢時的不同角度。

  【展示應用 評價自我】

  補充練習1、已知一組數據10,10,x,8(由大到小排列)的中位數與平均數相等,求x值及這組數據的中位數。

  解:∵10,10,x,8的中位數與平均數相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴這組數據中的中位數是9。

  補充練習2、當5個整數從小到大排列,其中位數是4,如果這個數集的唯一眾數是6,則這5個整數可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:設這5個整數按從小到大排列為a1,a2,a3,a4,a5,由于中位數是4,所以a3=4,又6是唯一眾數,所以a4=a5=6,此時,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:選(A)

  3、教材P159中1、2、3

  【鏈接知識 歸納小結】

  1.知識小結:這節(jié)課我們學習了眾數、中位數的概念,了解了它們在描述一組數據集中趨勢時的不同角度和適用范圍。

  2.方法小結:①眾數由所給數據可直接求出,(一組數據中的眾數可能不止一個,眾數是一組數據中出現(xiàn)的次數最多的數據,而不是該數據出現(xiàn)的次數.如果有兩個數據出現(xiàn)的次數相同,并且比其他數據出現(xiàn)次數都多,那么這兩個數據都是這組數據的眾數)。②求中位數時,首先要先排序(從小到大或從大到小),然后計算中位數的序號,分數據為奇數個與偶數個兩種來求.(既找出最中間的一個數據或最中間兩個數并算出它們的平均數)。

  3.知識網絡:平均數、眾數及中位數都是描述一組數據的集中趨勢的特征數,但描述的角度和適用范圍有所不同。平均數的大小與一組數據里的每個數據均有關系,其中任何數據的變動都會相應引起平均數的變動;眾數著眼于對各數據出現(xiàn)的頻數的考察,其大小只與這組數據中的部分數據有關。當一組數據中有不少數據多次重復出現(xiàn)時,其眾數往往是我們關心的一種統(tǒng)計量;中位數則僅與數據的排列位置有關,某些數據的變動對它的中位數沒有影響。當一組數據中的個別數據變動較大時,可用它來描述其集中趨勢。

  【布置作業(yè)】教材P163A組1、2、3,B組。

  【板書設計】

  14.2 眾數與中位數

  1.定義 例1 例2 例3

  眾數: 練習1 練習2

  中位數

初中數學公開課教案4

  教學目的

  1、通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。

  2、使學生會列一元一次方程解決一些簡單的應用題。

  3、會判斷一個數是不是某個方程的解。

  重點、難點

  1、重點:會列一元一次方程解決一些簡單的應用題。

  2、難點:弄清題意,找出“相等關系”。

  教學過程

  一、復習提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設小紅能買到工本筆記本,那么根據題意,得1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授

  問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)

  算術法:(328-64)÷44=264÷44=6(輛)

  列方程:設需要租用x輛客車,可得44x+64=328

  解這個方程,就能得到所求的結果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發(fā)現(xiàn)同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學的.解法中得到啟發(fā)?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習

  教科書第3頁練習1、2。

  四、小結

  本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業(yè)

  教科書第3頁,習題6.1第1、3題。

初中數學公開課教案5

  教學目標:

  會用待定系數法求二次函數的解析式,能結合二次函數的圖象掌握二次函數的性質,能較熟練地利用函數的性質解決函數與圓、三角形、四邊形以及方程等知識相結合的綜合題。

  重點難點:

  重點;用待定系數法求函數的'解析式、運用配方法確定二次函數的特征。

  難點:會運用二次函數知識解決有關綜合問題。

  教學過程:

  一、例題精析,強化練習,剖析知識點

  用待定系數法確定二次函數解析式.

  例:根據下列條件,求出二次函數的解析式。

 。1)拋物線y=ax2+bx+c經過點(0,1),(1,3),(-1,1)三點。

 。2)拋物線頂點P(-1,-8),且過點A(0,-6)。

  (3)已知二次函數y=ax2+bx+c的圖象過(3,0),(2,-3)兩點,并且以x=1為對稱軸。

 。4)已知二次函數y=ax2+bx+c的圖象經過一次函數y=-3/2x+3的圖象與x軸、y軸的交點;且過(1,1),求這個二次函數解析式,并把它化為y=a(x-h(huán))2+k的形式。

  學生活動:學生小組討論,題目中的四個小題應選擇什么樣的函數解析式?并讓學生闡述解題方法。

  教師歸納:二次函數解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)

 。2)頂點式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)

  當已知拋物線上任意三點時,通常設為一般式y(tǒng)=ax2+bx+c形式。

  當已知拋物線的頂點與拋物線上另一點時,通常設為頂點式y(tǒng)=a(x-h(huán))2+k形式。

  當已知拋物線與x軸的交點或交點橫坐標時,通常設為兩根式y(tǒng)=a(x-x1)(x-x2)

  強化練習:已知二次函數的圖象過點A(1,0)和B(2,1),且與y軸交點縱坐標為m。

 。1)若m為定值,求此二次函數的解析式;

 。2)若二次函數的圖象與x軸還有異于點A的另一個交點,求m的取值范圍。

  二、知識點串聯(lián),綜合應用

  例:如圖,拋物線y=ax2+bx+c過點A(-1,0),且經過直線y=x-3與坐標軸的兩個交

初中數學公開課教案6

  一、教材分析

  本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。

  二、教學目標

  1、知識目標:了解多邊形內角和公式。

  2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

  3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。

  三、教學重、難點

  重點:探索多邊形內角和。

  難點:探索多邊形內角和時,如何把多邊形轉化成三角形。

  四、教學方法:引導發(fā)現(xiàn)法、討論法

  五、教具、學具

  教具:多媒體課件

  學具:三角板、量角器

  六、教學媒體:大屏幕、實物投影

  七、教學過程:

 。ㄒ唬﹦(chuàng)設情境,設疑激思

  師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?

  活動一:探究四邊形內角和。

  在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。

  方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現(xiàn)內角和是360。

  方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內角和相加是360。

  接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。

  師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

  活動二:探究五邊形、六邊形、十邊形的內角和。

  學生先獨立思考每個問題再分組討論。

  關注:

 。1)學生能否類比四邊形的方式解決問題得出正確的結論。

 。2)學生能否采用不同的方法。

  學生分組討論后進行交流(五邊形的內角和)

  方法1:把五邊形分成三個三角形,3個180的和是540。

  方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。

  方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。

  方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。

  師:你真聰明!做到了學以致用。

  交流后,學生運用幾何畫板演示并驗證得到的方法。

  得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。

 。ǘ┮晁伎迹囵B(yǎng)創(chuàng)新

  師:通過前面的討論,你能知道多邊形內角和嗎?

  活動三:探究任意多邊形的內角和公式。

  思考:

 。1)多邊形內角和與三角形內角和的關系?

 。2)多邊形的邊數與內角和的關系?

 。3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?

  學生結合思考題進行討論,并把討論后的結果進行交流。

  發(fā)現(xiàn)1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的.和。發(fā)現(xiàn)2:多邊形的邊數增加1,內角和增加180。

  發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。

  得出結論:多邊形內角和公式:(n-2)·180。

 。ㄈ⿲嶋H應用,優(yōu)勢互補

  1、口答:(1)七邊形內角和()

 。2)九邊形內角和()

 。3)十邊形內角和()

  2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?

  (2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。

  3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?

 。ㄋ模└爬ù鎯

  學生自己歸納總結:

  1、多邊形內角和公式

  2、運用轉化思想解決數學問題

  3、用數形結合的思想解決問題

 。ㄎ澹┳鳂I(yè):練習冊第93頁1、2、3

  八、教學反思:

  1、教的轉變

  本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現(xiàn)的樂趣。

  2、學的轉變

  學生的角色從學會轉變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。

  3、課堂氛圍的轉變

  整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

初中數學公開課教案7

  公開課教案

  授課時間: 20xx.11.17早上第二節(jié) 授課班級:初三、1班 授課教師:

  教學內容: 7.7 直線和圓的位置關系

  教學目標:

  知識與技能目標:1、理解直線和圓相交、相切、相離的概念。

  2. 初步掌握直線和圓的位置關系的性質和判定及其靈活的應用。

  過程與方法目標:1.通過直線和圓的位置關系的探究,向學生滲透分類、數形結合的思

  想,培養(yǎng)學生觀察、分析、概括、知識遷移的能力;

  2. 通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。

  情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的'關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。

  [1][2][3][4][5][6][7][8][9][10] ... 下一頁 >>

【初中數學公開課教案】相關文章:

初中數學公開課教案02-17

初中數學公開課教案(7篇)02-19

初中數學公開課教案7篇02-18

初中數學公開課教案(精選10篇)11-07

數學公開課教案01-09

公開課數學教案02-01

數學公開課大班教案11-01

小學數學公開課教案01-11

初中地理公開課教案02-24