亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

初中數(shù)學教案

時間:2024-07-24 11:56:13 初中數(shù)學教案 我要投稿

初中數(shù)學教案通用(15篇)

  作為一名辛苦耕耘的教育工作者,總歸要編寫教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。那么教案應該怎么寫才合適呢?下面是小編精心整理的初中數(shù)學教案,僅供參考,大家一起來看看吧。

初中數(shù)學教案通用(15篇)

初中數(shù)學教案1

  一、教材的地位與作用

  《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節(jié)。在此之前學生已經(jīng)學習了一元一次方程,這為本節(jié)的學習起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。

  二、教學目標

  (一)知識與技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.會將一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

  (二)數(shù)學思考:

  體會學習二元一次方程的必要性,學會獨立思考,體會數(shù)學的轉(zhuǎn)化思想和主元思想。

  (三)問題解決:

  初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

  (四)情感態(tài)度:

  培養(yǎng)學生發(fā)現(xiàn)意識和能力,使其具有強烈的好奇心和求知欲。

  三、教學重點與難點

  教學重點:二元一次方程及其解的概念。

  教學難點:二元一次方程的概念里“含未知數(shù)的項的次數(shù)”的理解;把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

  四、教法與學法分析

  教法:情境教學法、比較教學法、閱讀教學法。

  學法:閱讀、比較、探究的學習方式。

  五、教學過程

  1.創(chuàng)設情境,引入新課

  從學生熟悉的姚明受傷事件引入。

  師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。

 。1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?

  (2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?

  設姚明投進了x個兩分球,罰進了y個球,可列出方程。

 。3)在雄鹿隊與火箭隊的比賽中易建聯(lián)全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?

  設易建聯(lián)投進了x個兩分球,y個三分球,可列出方程。

  師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?

  從而揭示課題。

 。ㄔO計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數(shù)學模型,從而回顧一元一次方程的概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學來源于生活,又應用于生活,通過創(chuàng)設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態(tài)投入學習,而且“會學”“樂學”。)

  2.探索交流,汲取新知

  概念思辨,歸納二元一次方程的特征

  師:那到底什么叫二元一次方程?(學生思考后回答)

  師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的.概念有什么區(qū)別嗎?(同學們思考后回答)

  師:根據(jù)概念,你覺得二元一次方程應具備哪幾個特征?

  活動:你自己構(gòu)造一個二元一次方程。

  快速判斷:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

 。ㄔO計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數(shù)”形象化。)

  二元一次方程解的概念

  師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯(lián)可能投中幾個兩分球,幾個三分球嗎?

  師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數(shù)的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)

  使二元一次方程兩邊的值相等的一對未知數(shù)的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質(zhì):使方程左右兩邊相等的一對未知數(shù)的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數(shù)的取值”的真正含義。)

  二元一次方程解的不唯一性

  對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?

 。ㄔO計意圖:設計此環(huán)節(jié),目的有三個:首先,是讓學生學會如何檢驗一對未知數(shù)的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數(shù)的取值,就可以代入方程算出另一個未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)當x=2時,求所對應的y的值;

 。2)取一個你自己喜歡的數(shù)作為x的值,求所對應的y的值;

 。3)用含x的代數(shù)式表示y;

  (4)用含y的代數(shù)式表示x;

 。5)當x=負2,0時,所對應的y的值是多少?

 。6)寫出方程3x+2y=10的三個解.

  (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程,實質(zhì)是解一個關于y的一元一次方程,滲透數(shù)學的主元思想。以此突破本節(jié)課的難點。)

  大顯身手:

  課內(nèi)練習第2題

  梳理知識,課堂升華

  本節(jié)課你有收獲嗎?能和大家說說你的感想嗎?3.作業(yè)布置

  必做題:書本作業(yè)題1、2、3、4。

  選做題:書本作業(yè)題5、6。

  設計說明

  本節(jié)授課內(nèi)容屬于概念課教學。數(shù)學學科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學概念作為核心和邏輯起點,形成系統(tǒng)的數(shù)學知識,所以數(shù)學概念是數(shù)學課程的核心。只有真正理解數(shù)學概念,才能理解數(shù)學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節(jié)課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點,進而理解“含有未知數(shù)的項的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數(shù)個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數(shù)的取值,從而讓學生產(chǎn)生有后續(xù)學習的愿望。

  在講授用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,

  此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數(shù)的取值,代入原方程求另一個未知數(shù)的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數(shù),那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”在求值過程中的簡潔性,強化這種代數(shù)形式。另外,在引導學生推導“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程中,滲透數(shù)學的主元思想和轉(zhuǎn)化思想。

初中數(shù)學教案2

  教學目標:

  1.使學生能抓住關鍵找出相對應的量,去分析數(shù)量關系,把握解題思路。

  2.滲透對應的數(shù)學思想,提高學生分析解決實際問題的能力。

  3.萌發(fā)學生的辯證思維,學習全面地分析、考慮問題。

  教學過程:

  一、以舊引新,促進遷移。

  1.提問:

 。1)甲買4本練習本,乙買6本練習本,誰付的錢多?為什么?

  (2)買的本數(shù)多,付出的錢也一定多嗎?當每本價錢相同時,買的本數(shù)多,付出的錢怎樣?付的錢少,說明買的本數(shù)怎樣?

  【評析:這里(1)題的設計頗具匠心,題中有意不說乙和甲買的是同樣的練習本,讓學生判斷誰付的錢多。估計學生中會有兩種反饋,一種認為乙買的本數(shù)多,付的錢也多;另一種認為不一定乙付的錢多,因為沒有說明是同樣的練習木。然后在(2)題里,運用反問句強化每本價錢相同這個必要條件。這樣的設計,使學生感受到看問題要仔細、全面,不能粗略作出結(jié)論!

  2.出示:(同種鉛筆)

  小紅買:///

  小剛買://///

 。1)知道哪兩個條件可以求出每支鉛筆的價錢?若告訴小紅付出1元2角,怎樣計算出每支鉛筆的價錢?(板書:12÷3=4(角)。)

  (2)還可告訴哪些條件,也能計算出每支鉛筆的價錢?

  (讓學生補條件。估計會有:①小剛付出2元。20÷5=4(角);②兩人共付出3元2角。32÷(3+5)=4(角)③小剛比小紅多付8角。8÷(5-3)=4(角)。)

 。3)(結(jié)合所補條件①、②的解答)提問:求每支鉛筆的價錢,關鍵要找出什么?(鉛筆支數(shù)及相對應的價錢。)(結(jié)合所補條件③)請把條件和問題連起來說一遍。教師出示:同一種鉛筆,小紅買了3支,小剛買了5支,小剛比小紅多付8角錢,每支鉛筆多少錢?

  二、嘗試練習,歸納思路。

  1.學生獨自思考,嘗試解答上面的例題。

  2.同桌交流,展示解題的思維過程。

  3.指名學生列式,并結(jié)合算式“8÷(5-3)”提問:為什么用8除以2呢?(讓學生根據(jù)鉛筆實物圖說理。)

  4.進行鼓勵性評價:同學們想得真好。小剛比小紅多付8角錢,小剛比小紅多買2支鉛筆,從這兩個相差的數(shù)量中找到了相對應的量,即“2支鉛筆的價錢是8角錢”。這樣就很容易算出每支鉛筆的價錢。

  【評析:在上面討論的基礎上,運用形象直觀而又簡明通俗的實例,提出要求的問題,讓學生獨立思考,展開想象,在教師的點撥下,補出各種不同的條件。然后從學生所補的條件中,選擇一種,組成一個完整的應用題,放手讓學生自己去解答。這樣的教學能引導學生參與學習的意向,主動地掌握這類問題的結(jié)構(gòu)以及解題的關鍵,完全改變了教師一步一步發(fā)問,學生跟隨教師一步一步回答的那種被動學習的狀態(tài)。從學生的思維來看是變通型、創(chuàng)造型的!

  5.練一練。

  一輛汽車用同樣的速度行駛,上午行了120千米,下午行了200千米,下午比上午多行2小時,平均每小時行多少千米?

  (1)讓學生畫線段圖表述題意,借助線段圖找出對應量,進行解答。

  (2)由學生展示思維過程,進行評析。

  【評析:練習題的情節(jié)變了,數(shù)量之間的關系未變,要求學生畫線段圖找對應量進行解答,組織學生自己展示思維過程,相互評議,教師只起一個組織者的作用。充分發(fā)揮學生的群體作用,使學生的心態(tài)處于學習主體的位置,感受到互助合作與成功的愉快!

  三、分層練習,發(fā)展思維。

  第一層:

  選擇正確算式的編號(用手勢表示)。

  1.同一種自行車,第一天賣出8輛,第二天賣出的比第一天多2輛,第二天收款1500元。每輛自行車多少元?

  (1)1500÷2(2)1500÷(8+2)(3)1500÷(8+2+8)

  先讓學生獨立思考,畫圖分析,進行選擇。在作出正確選擇后,教師繼續(xù)引發(fā)學生深入思考:

 、偃暨x算式

 。1),應怎樣改變條件?

 、谌暨x算式

 。3),應怎樣改變條件?從中突出關鍵是要找相對應的量。

  2.水果店運來若干箱蘋果,每箱蘋果一樣重。一共運來250千克。已經(jīng)賣出4箱蘋果,賣出100千克。每箱蘋果重多少千克?

  (1)10O÷4(2)(250-100)÷4

  先讓學生獨立思考作出選擇,再引導學生畫出線段圖,并提問:若要選擇算式(2),條件該怎么改?從中強調(diào)根據(jù)所求問題選擇有關信息,關鍵是找出對應量。

  【評析:這兩題都采用選擇算式的形式,在學生作出正確判斷后,教師再次要求學生,根據(jù)所給的算式改變應用題的條件,使算式與題目的要求相符合。這種練習方式,既有利于辨析應用題條件與問題的關系,強化解題思路,防止思維負定勢,又滲透了事物之間的千變?nèi)f化,學會具體問題具體分析的科學態(tài)度,這確是一種較好的練習形式!

  第二層:發(fā)展題。

  學校新買來10盒羽毛球。如果從每盒中取出2只,剩下的羽毛球正好等于原來的'8盒。買來的10盒羽毛球共有多少只?

  在學生獨立思考的基礎上,讓學生前后四人為一組進行討論,再指名展示思維過程,師生一起作評價,突出解題關鍵在于“取出的羽毛球相當于原來的2盒”這個對應量。

  四、課堂小結(jié)。

  提問:今天所學的應用題,解題的關鍵是什么?

  【總評:潘小明老師的這節(jié)課,曾在本市和外省市借班上課,教學效果甚佳,表現(xiàn)在學生學得主動,思維活躍,甚至于有些學生不愿意下課,還要討論下去。究其原因,一是擺正了教與學的關系,千方百計讓學生主動地學,使學生真正成為學習的主體。二是改革了應用題傳統(tǒng)的教學方法,將原來的“讀題→分析(或畫線段圖)→列式計算→寫答句”的模式,改變成“直觀形象的實例→提出問題→分析解答→組成語言文字的應用題→完整解答→變化條件或問題→深化認識”的認知過程模式。這種教學模式更貼近學生的認識規(guī)律。三是緊緊把握住題目里數(shù)量之間的關系,突出解題思路,訓練學生思考力。當然,要做到這些還必須具有正確的教學思想和教育觀念,承認兒童具有巨大的智力潛在力,力求提高他們的數(shù)學素養(yǎng),培育他們良好的心理素質(zhì)等宏觀上的信念,才能組織好一堂課。從這堂課里還可以看出教師的教學藝術也起到重要的作用!

初中數(shù)學教案3

  一學期的工作結(jié)束了,可以說緊張忙碌卻收獲多多。回顧這學期的工作,我教九(4)班的數(shù)學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結(jié)經(jīng)驗,吸取教訓,使以后的工作能夠有效、有序地進行,現(xiàn)將教學所得總結(jié)如下:

  一、在備課方面

  在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。

  二、在教學過程方面

  在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系!敝挥谐浞职l(fā)揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發(fā)展。但還是難免受傳統(tǒng)教學觀念的`影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學!啊钡慕虒W模式下,才開始進一步嘗試,并在不斷的嘗試中總結(jié)經(jīng)驗。

  三、工作中存在的問題

  1)、教材挖掘不深入。

  2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發(fā)不足。

  3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導

  4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態(tài)度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數(shù)。導致了教學中的盲目性。

  四、今后努力的方向

  1)、加強學習,學習新教學模式下新的教學思想。

  2)、熟讀初一到初三的數(shù)學教材,深入挖掘教材,進一步把握知識點和考點。

  3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。

  4)、加強轉(zhuǎn)差培優(yōu)力度。

  5)、加強教學反思,加大教學投入。

  一學期的教學工作即將結(jié)束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業(yè)務水平。

初中數(shù)學教案4

  一、素質(zhì)教育目標

  (一)知識教學點

  1.理解畫兩個角的差,一個角的幾倍、幾分之一的方法.

  2.掌握用量角器畫兩個角的和差,一個角的幾倍、幾分之一的畫法.用三角板畫一些特殊角的畫法.

 。ǘ┠芰τ柧汓c

  通過畫角的和、差、倍、分,三角板和量角器的使用,培養(yǎng)學生動手能力和操作技巧.

 。ㄈ┑掠凉B透點

  通過利用三角板畫特殊角的方法,說明幾何知識常用來解決實際問題,進行幾何學在生產(chǎn)、生活中起著重要作用的教育,鼓勵他們努力學習。

  (四)美育滲透點

  通過學生動手操作,使學生體會到簡單幾何圖形組合的多樣性,領會幾何圖形美.

  二、學法引導

  1.教師教法:嘗試指導,以學生操作為主.

  2.學生學法:在教師的指導下,積極動手參與,認真思考領會歸納.

  三、重點、難點、疑點及解決辦法

 。ㄒ唬┲攸c

  用量角器畫角的和、差、倍、分及用三角板畫特殊角.

 。ǘ╇y點

  準確使用量角器畫一個角的幾分之一.

  (三)疑點

  量角器的正確使用.

 。ㄋ模┙鉀Q辦法

  通過正確指導,規(guī)范操作,使學生掌握畫法要領,并以練習加以鞏固,從而解決重難點及疑點.

  四、課時安排

  1課時

  五、教具學具準備

  一副三角板、量角器.

  六、師生互動活動設計

  1.通過教師設,學生動手及思考創(chuàng)設出情境,引出課題.

  2.通過學生嘗試解決、教師把握幾何語言美的方法,放手由學生自己解決有關角的畫法.

  3.通過提問的形式完成小結(jié).

  七、教學步驟

  (一)明確目標

  使學生會用量角器畫角及角的.和、差、倍、分,培養(yǎng)學生動手能力和操作能力.

 。ǘ┱w感知

  通過教師指導,學生動手操作完成對畫圖能力和操作能力的掌握.

  圖1

 。ㄈ┙虒W過程

  創(chuàng)設情境,引出課題

  教師在黑板上畫出(如圖1).

  師:現(xiàn)有工具量角器和三角板,誰到黑板上畫一個角等于呢?請同學們觀察他的操作,老師要找同學說明他的畫法.

  【教法說明】有上節(jié)課的基礎,學生會先用量角器測量的度數(shù),再畫一個度數(shù)等于這個度數(shù)的角,學生也會敘述其畫法.

  提出問題:若老師想畫的余角、補角呢?

  學生會想到畫、減去的度數(shù)后的角,即為的余角、補角.

  師:是否還有別的方法?

  這時學生一定會積極思考,立刻回答還有困難.教師抓住時機點明課題:同學們不用著急,今天我們就研究角的畫法,學習用三角板、量角器畫角的和、差、倍、分以及一些特殊角.老師提出的問題你們會解決的.另外,角的畫法在我們?nèi)粘I钪袘脧V泛,希望同學們認真學習.(板書課題……)

 。郯鍟1.7角的畫法

  探究新知

  1.畫一個角等于已知角

  找學生再次敘述方法:用量角器量出已知角的度數(shù),再畫一個等于這個度數(shù)的角.

  操作:略.

  注意:量角器使用三要素:對中、重合、讀數(shù).

  2.用三角板畫特殊角

  師:請同學們準備好練習本和一副三角板,再找同學說出一副三角板中各角度數(shù).

  學生活動:用三角板在練習本上畫出直角、角、角、角.

  提出問題:你能利用一副三角板畫出、的角嗎?

  學生活動:討論畫、的角的方法,在練習本上畫出圖形,同桌可相互交換檢查,找學生到黑板上畫.

  【教法說明】有前一節(jié)角的和、差的理解和、 、角的畫法,學生對畫、的角不會有困難.因此,教師要敢于放手,讓學生自己去嘗試解決問題的方法,也培養(yǎng)他們的動手操作的能力,但對于畫法學生不會敘述得太嚴密,教師要把關,培養(yǎng)學生幾何語言的嚴密性.

  教師根據(jù)前面學生所畫圖形,引導學生寫出畫法.(以角的畫法為例,與例題相符.)

  圖1

  畫法如圖l,①利用三角板,畫

  ②在的外部,再畫就是要畫的的角.

  反饋練習:用三角板畫、的角.

  【教法說明】由學生獨立完成以上三個角的畫圖.教師不給任何提示,只要求寫出畫角的方法,注意觀察畫法,是否寫出了“在角的內(nèi)部畫的角”.區(qū)別例題中兩角和的畫法.

  提出問題:由一副三角板可以畫出多少度的角?

  學生討論得出可以畫出的角.

  這些角都是的倍數(shù),用三角板也只限畫這樣的角.由此得出:由量角器畫任意角的和、差、倍、分角.

  3.畫任意兩個角的和差及一個角的幾倍、幾分之一.

  問題:如圖1,已知、(),如何畫出與的和?與的差?

  圖1

  學生活動:討論畫,的方法,并在練習本上根據(jù)自己的想法畫圖.

  根據(jù)學生的討論回答,老師歸納以下方法:

  (1)用量角器量出、的度數(shù),計算出它們度數(shù)的和、差,再用量角器畫出等于它們度數(shù)和、差的角.

  (2)用量角器把移到上,如果本方法.

  圖1

  教師示范,寫出兩種畫法:

  畫法一:(1)用量角器量得,.

 。2)畫,就是要畫的角如圖1.

  圖2

  畫法二:(1)用量角器畫.

 。2)以點為頂點,射為一邊,在的外部畫.

  就是要畫的角如圖2.

  學生活動:敘述用兩種方法畫的畫法.出示例1由學生完成,要求用兩種方法,找同學板演.

  例1?已知,畫出它們的余角.

  畫法一:(1)量得.

  圖1圖2

  (2)畫,就是所要畫的角,見圖1.

  畫法二:利用三角板,以的頂點為頂點,一邊為邊,畫直角,使的另一邊在直角的內(nèi)部,如圖2,就是所要畫的角.

  【教法說明】第二種畫法學生可能敘述或書寫不太完整,教師要注意其嚴密性.

  反饋練習

  1.已知,畫出它的補角.

  2.已知,畫它們的角平分線.

  3.畫的角,并把它分成三等份.

  【教法說明】本練習只要求圖形正確即可,不要求寫出畫法.

  (四)總結(jié)、擴展

  以提問的形式歸納出以下知識脈絡:

  八、布置作業(yè)

  課本第46頁習題1.5A組第2、3題.

初中數(shù)學教案5

  教學目標

  1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。

  2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。

  3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。

  4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。通過豐富有趣拼的圖活動增強對數(shù)學學習的興趣。

  重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。

  2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經(jīng)驗。

  難點利用數(shù)形結(jié)合的方法驗證公式

  教學方法動手操作,合作探究課型新授課教具投影儀

  教師活動學生活動

  情景設置:

  你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)

  新課講解:

  把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁例題的拼法及相關公式

  提問:還能通過怎樣拼圖來解決以下問題

 。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;

 。2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2

  試用拼一個長方形的方法,把這個二次三項式因式分解。

  這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作

  了解學生拼圖的情況及利用自己的`拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據(jù)不同學生的不同狀況給予適當?shù)囊龑,引導學生整理結(jié)論。

  小結(jié):

  從這節(jié)課中你有哪些收獲?

 。ń處煈o予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結(jié)。)

  學生回答

  a(b+c+d)=ab+ac+ad

 。╝+b)(c+d)=ac+ad+bc+bd

  (a+b)2=a2+2ab+b2

  學生拿出準備好的硬紙板制作

  給學生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學生教師要給予適當引導。

  作業(yè)第95頁第3題

  板書設計

  復習例1板演

  ………………

  ………………

  ……例2……

  ………………

  ………………

  教學后記

初中數(shù)學教案6

  教學內(nèi)容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關系。

  教學目標:1、通過對"撲克"有趣的研究,培養(yǎng)起學生對生活中平常小事的關注。

  2、調(diào)動學生豐富的`聯(lián)想,養(yǎng)成一種思考的習慣。

  教學重難點:"撲克"與年月日、季度的聯(lián)系。

  教學過程:

  一、談話引入

  師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?

  生:......

 。ń處熝a充,引發(fā)學生的好奇心。)

  師: "撲克"還有一種作用,而且與數(shù)學有關!

  生:......

  二、新課

  1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬

  2、大王=太陽 小王=月亮 紅=白天 黑=夜晚

  3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1

  4、所有牌的和+小王=平年的天數(shù)

  所有牌的和+小王+大王=閏年的天數(shù)

  5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月

  6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。

  7、一種花色的和=一個季度的天數(shù)

  一種花色有13張牌=一個季度有13個星期

  三、小結(jié)

  生活中有很多的數(shù)學,他每時每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。

初中數(shù)學教案7

  初中數(shù)學分層教學的理論與實踐

  天山六中裴煥民

  一、分層教學的含義

  分層教學是指教師在學生知識基礎、智力因素存在明顯差異的情況下,有區(qū)別地設計教學環(huán)節(jié)進行教學,遵循因材施教的原則,有針對性地實施對不同類別學生的學習指導,不僅根據(jù)學生的不同選擇不同的教法、布置作業(yè),還因材施“助”、因材施“改”、因材施“教”,使每個學生都能在原有的基礎上得以發(fā)展,從而達到不同類別的教學目標的一種教學方法。

  分層教學是“著眼于與學生的可持續(xù)性的、良性的發(fā)展”的教育觀念下的一種教學實施策略。所謂分層教學(同班、同年級分層次教學)就是教師在教授同一教學內(nèi)容時,對同一個班內(nèi)不同知識水平和接受能力的優(yōu)、中、差生以相應的三個層次的教學深度和廣度進行合講分練,做到課堂教學有的放矢,區(qū)別對待,使每個學生都在自己原來的基礎上學有所得,思有所進,在不同程度上有所提高,同步發(fā)展。教師的教學方法應從最低點起步,分類指導,逐步推進,做到“分合”有序,動靜結(jié)合,并分層設計練習,分層設計課堂,分層布置作業(yè),引導學生全員參與,各得進步。

  二、分層教學必要性分析

  1、教學現(xiàn)狀呼喚分層教學的實施

  義務教育的實施使小學畢業(yè)生全部升入初中學習,這樣,在同一班里,學生的知識、能力參差不齊。但是,應試教育留下的種種弊端抑制了各層次的學生的學習積極性和興趣,整齊劃一的教學要求,忽視了學生之間的差異。為了使教育面向全體學生,減輕部分學生過重的負擔,使他們在原有的基礎上有所提高,全面提高教學質(zhì)量,又要使有特長的學生得到更進一步的發(fā)展。因此必須實施因材施教,根據(jù)不同的學生的具體情況,確立不同的教學目標,采取不同的教學方法,使其個性得到充分發(fā)展,為社會培養(yǎng)各種層次的有用之人。

  2、新課程改革呼喚分層教學的實施

  數(shù)學課程改革的核心是課程的實施,而教學是課程實施的基本途徑。課程改革歸根到底是要轉(zhuǎn)變教師的傳統(tǒng)教學觀念:包括教學方式的轉(zhuǎn)變——從“教”到

  “引”;知識技能掌握理念的轉(zhuǎn)變——從“滿堂灌”、“書山題海”到“在親身經(jīng)歷中體會、理解、掌握知識技能”,強調(diào)自我的情感體驗;教材觀的轉(zhuǎn)變——從“教教材”到“用教材”,教材變成我們引導學生探究知識的工具之一;評價機制的轉(zhuǎn)變——從“唯分數(shù)論”到“適合學生自身特點的發(fā)展”,這是實施分層教學的原動力,但也是現(xiàn)今新課程改革的一個難點。

  在新課改中實施分層教學法的目的是逐步樹立學困生學習的信心,激發(fā)中等生的學習潛力,擴大優(yōu)生的學習面。為了適應當前素質(zhì)教育的需要,我們要采用針對性的矯正和幫助,進行分層教學,分類指導,及時反饋,從中探索出一條教學改革的新路子。

  3、學生個體差異的客觀存在

  心理學的研究結(jié)果表明:學生的學習能力差異是存在的,特別是學生在數(shù)學學習能力方面存在著較大的'差異這已是一個不爭的事實。造成差異的原因有很多,學生的先天遺傳因素及環(huán)境、教育條件都有所不同,還有社會因素(即環(huán)境、教育條件、科學訓練),這些原因是對學生學習能力的形成起著決定性作用,所以學生所表現(xiàn)出的數(shù)學能力有明顯差異也是正常的。

  學生作為一個群體,存在著個體差異

  (1)智力差異。每個學生因為遺傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強;有的邏輯思維強;有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過人。

 。2)學習基礎差異。不同的學生在小學的數(shù)學狀況不一樣:有的學生數(shù)學十分優(yōu)秀,有的學生數(shù)學學習基本還沒入門,兩極分化相當嚴重。

 。3)學習品質(zhì)差異。有的學生學習數(shù)學十分認真,有一套自己的數(shù)學學習方法,學得輕松愉快;而有的學生因為沒有入門,數(shù)學學得十分艱難,部分學生甚至對數(shù)學學習喪失了信心。

  4、分層次教學符合因材施教的原則

  目前我國大部分省市的數(shù)學教學采用的是統(tǒng)一教材、統(tǒng)一課時、統(tǒng)一教參,在學生學習能力存在差異的情況下,在教學過程中往往容易產(chǎn)全“顧中間、丟兩頭”。如不因材施教,就使部分學生就成了陪讀、陪考。數(shù)學能力強的學生潛能得不到充分發(fā)揮,能力稍差的學生就可能變成了后進生。有研究結(jié)果表明:教師、

  家庭、社會、學生、學校等方面的因素都有可能是形成后進生的原因,其中有50%的原因是來自教師在教學中的失誤。我們的基礎教育既要注意確保學生的共性需求,又要顧及學生的個性發(fā)展,所以進行分層教育確有必要。

  5、分層次教學能夠有效推動教學過程的展開

  按照教育家達尼洛夫關于教學過程的動力理論之說,認為只有學生學習的可能性與對他們的要求是一致的,才可能推動教學過程的展開,從而加快學習成績的提高,而這兩者的統(tǒng)一關系若被破壞,就會造成學業(yè)的不良后果。學生的學習可能是由他們生理和心理的一般發(fā)展水平與對某項學習的具體準備狀態(tài)所決定的,學生學習可能性的構(gòu)成因素中既有相對穩(wěn)定的因素,又有易變的因素。相對穩(wěn)定的因素,決定了學生在一段時間內(nèi)可能達到的學習水平的范圍,決定了學業(yè)不良學生要取得學業(yè)進步只能是一個漸進的過程;易變的因素,使學生能在:一定的主客觀條件下提高或降低自己的實際可能性水平,從而促進或阻礙學習可能性與教學要求之間矛盾的轉(zhuǎn)化,加快學習成績提高或降低的速度。由此可見,分層次教學是著眼于協(xié)調(diào)教學要求與學生學習可能性的關系的一種極好的手段,使它們之間能相適應,從而推動教學過程的展開。

  三、分層教學研究的目的意義

  捷克教育家夸美紐斯在十七世紀提出來的班級授課制以其大大提高教學效率、加強學校工作的計劃性和實際社會效益風行了三百多年后,其固有的不利于學生創(chuàng)造能力的培養(yǎng)和因材施教等種種弊端與社會發(fā)展對教育的要求的矛盾越來越尖銳起來。隨著科學技術的發(fā)展,社會日益進步,教育資源和教育需求的增長和變化,班級授課制在我國做出輝煌的貢獻后逐步顯現(xiàn)出其先天的嚴重不足。教師在班級授課制下對能力強的學生“吃不飽”,能力欠佳的學生“吃不消”普遍感到力不從心。分層教學在這種情況下應運而生,成為優(yōu)化單一班級授課制的有利途徑。

  1.有利于所有學生的提高:分層教學法的實施,避免了部分學生在課堂上完成作業(yè)后無所事事,同時,所有學生都體驗到學有所成,增強了學習信心。

  2.有利于課堂效率的提高:首先,教師事先針對各層學生設計了不同的教學目標與練習,使得處于不同層的學生都能“摘到桃子”,獲得成功的喜悅,這極大地優(yōu)化了教師與學生的關系,從而提高師生合作、交流的效率;其次,教師在

  備課時事先估計了在各層中可能出現(xiàn)的問題,并做了充分的準備,使得實際施教更有的放矢、目標明確、針對性強,增大了課堂教學的容量?傊,通過這一教學法,有利于提高課堂教學的質(zhì)量和效率。

  3.有利于教師全面能力的提升:通過有效地組織好對各層學生的教學,靈活地安排不同的層次策略,極大地鍛煉了教師的組織調(diào)控與隨機應變能力。分層教學本身引出的思考和學生在分層教學中提出來的挑戰(zhàn)都有利于教師能力的全面提升。

  四、分層教學的理論基礎

  1、掌握學習理論

  布魯姆提出的“掌握學習理論”主張:“給學生足夠的學習時間,同時使他們獲得科學的學習方法,通過他們自己的努力,應該都可以掌握學習內(nèi)容”!安煌瑢W生需要用不同的方法去教,不同學生對不同的教學內(nèi)容能持久地集中注意力”。為了實現(xiàn)這個目標,就應該采取分層教學的方法。

  2、教學最優(yōu)化理論

  巴班斯基的“教學最優(yōu)化理論”的核心是:教學過程的最優(yōu)化是選擇一種能使教師和學生在花費最少的必要時間和精力的情況下獲得最好的教學效果的教學方案并加以實施。分層教學是實現(xiàn)這一目標的有效方式之一。

  3、新課標的基本理念

  《數(shù)學課程標準》提出了一種全新的數(shù)學課程理念:“人人學有價值的數(shù)學;人人都能獲得必需的數(shù)學;不同的人在數(shù)學上得到不同的發(fā)展”。面向全體學生,體現(xiàn)了義務教育的基礎性、普及性和發(fā)展性。不僅為數(shù)學教學內(nèi)容的設定指出方向,而且考慮到學生的可持續(xù)發(fā)展對數(shù)學的需求,并為學生學習數(shù)學可能產(chǎn)生的差異性留有充分的余地。

  五、分層教學實施的指導思想及原則

  首先,分層次教學的主體是班級教學為主,按層次教學為輔,層次分得好壞直接影響到“分層次教學”的成功與否。其指導思想是變傳統(tǒng)的應試教育為素質(zhì)教育,是成績差異的分層,而不是人格的分層。為了不給差生增加心理負擔,必須做好分層前的思想工作,了解學生的心理特點,講情道理:學習成績的差異是客觀存在的,分層次教學的目的不是人為地制造等級,而是采用不同的方法幫助

  他們提高學習成績,讓不同成績的學生最大限度地發(fā)揮他們的潛力,以逐步縮小差距,達到班級整體優(yōu)化。

  在對學生進行分層要堅持尊重學生,師生磋商,動態(tài)分層的原則。應該向?qū)W生宣布分層方案的設計,講清分層的目的和意義,以統(tǒng)一師生認識;指導每位學生實事求是地估計自己,通過學生自我評估,完全由學生自己自愿選擇適應自己的層次;最后,教師根據(jù)學生自愿選擇的情況進行合理性分析,若有必要,在征得學生同意的基礎上作個別調(diào)整之后,公布分層結(jié)果。這樣使部分學生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學生學習數(shù)學的興趣。

  其次,在分層教學中應注意下列原則的使用:

 、偎较嘟瓌t:在分層時應將學習狀況相近的學生歸為“同一層”;

  ②差別模糊原則:分層是動態(tài)的、可變的,有進步的可以“升級”,退步的應“轉(zhuǎn)級”,且分層結(jié)果不予公布;

 、鄹惺艹晒υ瓌t:在制定各層次教學目標、方法、練習、作業(yè)時,應使學生跳一跳,才可摘到蘋果為宜,在分層中感受到成功的喜悅;

 、芰阏趾显瓌t:教學內(nèi)容的合與分,對學生的“放”與“扶”,以及課外的分層輔導都應遵守這個原則;

  ⑤調(diào)節(jié)控制原則:由于各層次學生要求不一,因此在課堂上以學、議為主,教師要善于激趣、指導、精講、引思,調(diào)節(jié)并控制止好各層次學生的學習,做好分類指導;

  ⑥積極激勵原則:對各層次學生的評價,以縱向性為主。教師通過觀察、反饋信息,及時表揚激勵,對進步大的學生及時調(diào)到高一層次,相對落后的同意轉(zhuǎn)層。從而促進各層學生學習的積極性,使所有學生隨時都處于最佳的學習狀態(tài)。

  六、實施分層教學的策略與措施

 。ㄒ唬┓謱咏ńM

  把學生分層編組是實施分層教學、分類指導的基礎。學生的分類應遵循“多維性原則、自愿性原則和動態(tài)性原則”,教師通過對全班學生平時的數(shù)學學習的智能,技能、心理、成績、在校表現(xiàn)、家庭環(huán)境等,并對所獲得的數(shù)據(jù)資料進行綜合分析,分類歸檔。在此基礎上,將學生分成好、中、差層次的學習小組,讓

初中數(shù)學教案8

  生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。

  側(cè)棱:相鄰兩個側(cè)面的交線。棱柱的所有側(cè)棱長都相等。

  底面:棱柱有上、下兩個底面,形狀相同。

  側(cè)面:棱柱的側(cè)面都是平行四邊形。

  立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。

  棱柱:分為直棱柱、斜棱柱。直棱柱的`側(cè)面是長方形。

  特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。

  圓柱:上、下兩個面都是圓形,側(cè)面展開圖是長方形。

  圓錐:底面是圓形,側(cè)面展開圖是扇形。

  截面:用一個平面去截一個幾何體,截出的面。

  球:用一個平面去截,截面圖形是圓形。

  正方體的截面:可以是正方形、長方形、梯形、三角形。

  圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。

  展開與折疊:兩個面出現(xiàn)在同一位置的展開圖形,是不可折疊的。

  從三個方向看物體的形狀:正面看(主視圖)、左面看(側(cè)視圖)、上面看(俯視圖)

初中數(shù)學教案9

  教學目標

 。ㄒ唬┲R與能力

  1.通過對不等式的復習和具體實例總結(jié)一元一次不等式組以及一元一次不等式組的解集的概念。2.通過例題教會學生解一元一次不等式組,并教會學生通過在數(shù)軸上表示不等式的解集得到不等式組的解集,讓學生感受數(shù)形結(jié)合的作用。

  (二)過程與方法

  1.創(chuàng)設情境,通過實例引導學生考慮多個不等式聯(lián)合的解法。2.通過例題總結(jié)解一元一次不等式組的方法,并總結(jié)一元一次不等式組的解與一元一次不等式的解之間的關系。

 。ㄈ┣楦、態(tài)度與價值觀

  1.通過數(shù)軸的表示不等式組的解,讓學生加深對數(shù)形結(jié)合的作用的理解,使他們逐步熟悉和掌握這一重要的思想方法。2.在對例題的講解中,使學生認識一元一次不等式組的解集即每個不等式解集的公共部分,從而滲透“交集”的思想。

  3.在解不等式組的過程中讓學生體會數(shù)學解題的直觀性和簡潔性的數(shù)學美 教學重、難點 重點:掌握一元一次不等式組的解法,會用數(shù)軸表示一元一次不等式組解集 的情況。難點 :1.弄清一元一次不等式的解集與一元一次不等式組的解集之間的關系。2.靈活運用一元一次不等式組的知識解決問題。

  教學過程

  一.設置情景,引入課題

  學生活動:請學生觀看購物街轉(zhuǎn)轉(zhuǎn)盤游戲.(在看之前先讓學生看一看游戲規(guī)則:轉(zhuǎn)輪上平均分布著5、10、15一直到100共20個數(shù)字。每位選手最多有兩次機會。選手轉(zhuǎn)動轉(zhuǎn)輪的數(shù)字之和,最大且不超過100者為勝出,可以獲得相應的獎品。選手每次必須把轉(zhuǎn)輪轉(zhuǎn)動1圈才有效.)

  設第三位選手第二次轉(zhuǎn)的數(shù)字為x,他要勝出應滿足什么條件? 預設學生

  1x?10?75,預設學生2

  x?10?教師提出問題:這兩個條件只需滿足一個還是缺一不可?

  預設學生:同時具備??x?10?75

  x?10?100?教師活動:

  1、講解聯(lián)立符號的作用,并引入課題.2、給出定義:由幾個含有同一未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組.【設計意圖】從一個學生感興趣的游戲入手.問題的提出具有一定的現(xiàn)實性和探究性,目的是激發(fā)學生探究新知的欲望,在教師的引導下,將生活中的問題轉(zhuǎn)化為數(shù)學問題,從而引出本課題.學生活動

  用心找一找:下列不等式組中哪些是一元一次不等式組?

  ?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?預設學生1:(2)(3)(4)(5)預設學生2:(2)(4)(5)預設學生3:(2)(4)

  【設計意圖】教師組織學生分組討論,明析一元一次不等式組的定義.使學生進一步明確“幾個含有同一個未知數(shù)的一元一次不等式組成.”

  二、探索過程

  問題一:??x?10?75這兩個不等式的解分別是什么呢?

  x?10?100??x?65 ?x?90?問題二:怎么表示不等式組的解呢?

  什么是不等式組的解呢?

  【設計意圖】通過這兩個問題的探討,讓學生在解不等式的過程中得出不等式組的解法和不等式組的解的表示方法.文字語言:大于65小于或等于90的`數(shù).圖形語言: O***0

  數(shù)學式子:65<x≤90 學生活動:探究不等式組的解

  問題:求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7學生預設1:通過數(shù)軸,能求出不等式組的解

  學生預設2:找不出其中的規(guī)律

  【設計意圖】讓學生利用數(shù)軸尋找不等式組的解,并表示出來,引導學生找出其中的規(guī)律,培養(yǎng)學生善于現(xiàn)問題、總結(jié)規(guī)律的能力

  三、練習鞏固,拓展提高

  學生活動:1.寫出下列不等式組的解

  (1)不等式組??x??5的解在數(shù)軸上表示為____________則不等式組的解為 x??2??x??5的解在數(shù)軸上表示為_______________則不等式組的解?x??2(2)不等式組?為

  (3)不等式組??x??1的解為 x?2??x??1的解為 x?2?(4)不等式組 ?2.選擇題:(1)不等式組??x?2的解是()x?2??2 ?2 C.無解 ?2(2)不等式組??x??2的負整數(shù)解是()x??3?A.–2,0,-1 B.-2 C.–2,-1 D.不能確定

  【設計意圖】讓學生及時鞏固,準確找出不等式組的解,在找不等式組的解的過程中引入整數(shù)解.四、合作小結(jié),課外探索 學生活動:

  1每位同學寫一個以x為未知數(shù)的一元一次不等式;

  2、同桌的兩個不等式組在一起叫做什么?三位同學的不等式組在一起呢?

  3、每位同學把你所寫的不等式解出來;

  4、同桌所組成的不等式組的解是什么?

  【設計意圖】通過問題串,在生生、師生互動的情況下,復習一元一次不等式組的定義和解.增強了學生之間的合作交流.五、布置作業(yè)

  3個小組計劃在10天內(nèi)生產(chǎn)500件產(chǎn)品(每天生產(chǎn)量相同),按原先的生產(chǎn)速度,不能完成任務;如果每個小組每天比原先多生產(chǎn)1件產(chǎn)品,就能提前完成任務.每個小組原先每天生產(chǎn)多少件產(chǎn)品?

  【設計意圖】通過實際問題的解決,有利于學生體會到數(shù)學來源于生活,并能有效地復習鞏固本堂課所學的知識和方法.【板書設計】

  一元一次不等式組 ?x?10?75??x?10?100?x?65 文字語言:大于??x?9065小于或等于90的數(shù).圖形語言: O***0數(shù)學式子:65<x≤90

  求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)規(guī)律:大大取大,小小取;

  大小小大中間找

  大大小小為

初中數(shù)學教案10

  教學目的

  1、使學生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準確判斷一個數(shù)是有理數(shù)還是無理數(shù)。

  2、使學生能了解實數(shù)絕對值的意義。

  3、使學生能了解數(shù)軸上的點具有一一對應關系。

  4、由實數(shù)的分類,滲透數(shù)學分類的思想。

  5、由實數(shù)與數(shù)軸的一一對應,滲透數(shù)形結(jié)合的思想。

  教學分析

  重點:無理數(shù)及實數(shù)的概念。

  難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應。

  教學過程

  一、復習

  1、什么叫有理數(shù)?

  2、有理數(shù)可以如何分類?

 。ò炊x分與按大小分。)

  二、新授

  1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。

  判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。

  2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。

  3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。

  除了按定義還能按大小寫出列表。

  4、實數(shù)的相反數(shù):

  5、實數(shù)的絕對值:

  6、實數(shù)的運算

  講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判斷題:

 。1)任何實數(shù)的偶次冪是正實數(shù)。( )

 。2)在實數(shù)范圍內(nèi),若| x|=|y|則x=y。( )

 。3)0是最小的實數(shù)。( )

 。4)0是絕對值最小的`實數(shù)。( )

  解:略

  三、練習

  P148 練習:3、4、5、6。

  四、小結(jié)

  1、今天我們學習了實數(shù),請同學們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關系,二是對實數(shù)兩種不同的分類要清楚。

  2、要對應有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質(zhì),來理解在實數(shù)中的運用。

  五、作業(yè)

  1、P150 習題A:3。

  2、基礎訓練:同步練習1。

初中數(shù)學教案11

  教學目標:

  利用數(shù)形結(jié)合的數(shù)學思想分析問題解決問題。

  利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。

  在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。

  教學重點和難點:

  運用數(shù)形結(jié)合的思想方法進行解二次函數(shù),這是重點也是難點。

  教學過程:

  (一)引入:

  分組復習舊知。

  探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?

  可引導學生從幾個方面進行討論:

 。1)如何畫圖

 。2)頂點、圖象與坐標軸的交點

 。3)所形成的三角形以及四邊形的面積

 。4)對稱軸

  從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。

  (二)新授:

  1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的'圖形面積與已知圖形面積有數(shù)量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。

  再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。

  再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。

  2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。

  例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。

 。ㄈ┨岣呔毩

  根據(jù)我們學校人人皆知的船模特色項目設計了這樣一個情境:

  讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。

  讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。

 。ㄋ模┳寣W生討論小結(jié)(略)

  (五)作業(yè)布置

  1、在直角坐標平面內(nèi),點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

 。1)求二次函數(shù)的解析式;

 。2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。

  2、如圖,一個二次函數(shù)的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。

  3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。

 。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;

 。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(備用數(shù)據(jù): ,計算結(jié)果精確到1米)

初中數(shù)學教案12

  一、目的要求

  1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內(nèi)容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結(jié)合這些內(nèi)容,學生還會逐步熟悉函數(shù)的知識及有關的數(shù)學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學生初次接觸函數(shù)的有關內(nèi)容時,一定要結(jié)合具體函數(shù)進行學習,因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的',教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數(shù)關系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)

  由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關系,小學數(shù)學是這樣陳述的:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  寫成式子是(一定)

  需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。

  其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習:

  教科書13、4節(jié)練習第1題.

初中數(shù)學教案13

  1.初中數(shù)學教案模板

  1.課題

  填寫課題名稱(初中代數(shù)類課題)

  2.教學目標

  (1)知識與技能:

  通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;

  (2)過程與方法:

  通過......(討論、發(fā)現(xiàn)、探究)的過程,提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價值觀:

  通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應用到實際生活中,增加學生數(shù)學學習的樂趣。

  3.教學重難點

  (1)教學重點:本節(jié)課的知識重點

  (2)教學難點:易錯點、難以理解的知識點

  4.教學方法(一般從中選擇3個就可以了)

  (1)討論法

  (2)情景教學法

  (3)問答法

  (4)發(fā)現(xiàn)法

  (5)講授法

  5.教學過程

  (1)導入

  簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)

  (2)新授課程(一般分為三個小步驟)

 、俸唵沃v解本節(jié)課基礎知識點(例:類比一元一次方程的解法,講解一元一次不等式的解法和步驟)。

 、跉w納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設置易錯點,進行強調(diào)?梢栽O計分組討論環(huán)節(jié)(例:分組討論一元一次不等式的解法,歸納總結(jié)一元一次不等式的方法步驟,設置系數(shù)化為一,負號要變號的易錯點)。

  ③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題(例:設置一元一次不等式的應用題,學生再次體會一元一次不等式解決實際問題,并且再次鞏固不等式的解法)。

  (3)課堂小結(jié)

  教師提問,學生回答本節(jié)課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。

  6.教學板書

  2.初中數(shù)學教案格式

  課程編碼:______________________________________

  總學時 / 周學時: /

  開課時間: 年 月 日 第 周至第 周

  授課年級、專業(yè)、班級:___________________________

  使用教材:_______________________________________

  授課教師:_______________________________________

  1.章節(jié)名稱

  2.教學目的

  3.課時安排

  4.教學重點、難點

  5.教學過程(包括教學內(nèi)容、教師活動、學生活動、教學方法等)

  6.復習鞏固與作業(yè)要求

  7.教學環(huán)境及教具準備

  8.教學參考資料

  9.教學后記

  3.初中數(shù)學教案范文

  教學目的

  1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的'數(shù)學模型的作用。

  2.使學生會列一元一次方程解決一些簡單的應用題。

  3.會判斷一個數(shù)是不是某個方程的解。

  重點、難點

  1.重點:會列一元一次方程解決一些簡單的應用題。

  2.難點:弄清題意,找出“相等關系”。

  教學過程

  一、復習提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設小紅能買到工本筆記本,那么根據(jù)題意,得1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授

  問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)

  算術法:(328-64)÷44=264÷44=6(輛)

  列方程:設需要租用x輛客車,可得44x+64=328

  解這個方程,就能得到所求的結(jié)果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發(fā)現(xiàn)同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習

  教科書第3頁練習1、2。

  四、小結(jié)

  本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業(yè)

  教科書第3頁,習題6.1第1、3題。

初中數(shù)學教案14

  分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。

 。2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當x>0時,是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>

  2。當x

  >2時,是二次根式。

  例4下列各式是二次根式,求式子中的.字母所滿足的條件:

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。

  (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數(shù)學教案15

  一、 教學目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  二、 教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  三、 教學過程

  1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的.方向為負方向。

  ① 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2 ×3=

 、 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2 ×(-3)=

 、 (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  (-2) ×(-3)=

 。2)學生歸納法則

 、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)=( ) 同號得

  (-)×(+)=( ) 異號得

 。+)×(-)=( ) 異號得

 。-)×(-)=( ) 同號得

 、诜e的絕對值等于 。

 、廴魏螖(shù)與零相乘,積仍為 。

  (3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

 。1)教師按課本P75 例1板書,要求學生述說每一步理由。

  (2)引導學生觀察、分析例子中兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

  (3)學生做練習,教師評析。

 。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。

【初中數(shù)學教案】相關文章:

初中數(shù)學教案08-12

初中數(shù)學教案02-21

初中數(shù)學教案[經(jīng)典]02-21

初中數(shù)學教案模板11-02

角初中數(shù)學教案12-30

人教版初中數(shù)學教案07-17

初中數(shù)學教案《圓》03-05

初中數(shù)學教案范文02-21

初中數(shù)學教案【薦】11-14

【薦】初中數(shù)學教案11-26