高中數(shù)學(xué)優(yōu)秀教案(通用12篇)
作為一名教學(xué)工作者,時(shí)常需要編寫(xiě)教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么應(yīng)當(dāng)如何寫(xiě)教案呢?下面是小編為大家整理的高中數(shù)學(xué)優(yōu)秀教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高中數(shù)學(xué)優(yōu)秀教案 1
一、教材分析
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來(lái),并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問(wèn)題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過(guò)對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數(shù)學(xué)問(wèn)題”的建模過(guò)程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的.應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
三、教學(xué)目標(biāo)
1、知識(shí)和技能:在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。
過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過(guò)平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問(wèn)題解決的過(guò)程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過(guò)程
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過(guò)程:
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
問(wèn)題1:寧?kù)o的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?
1671年兩個(gè)法國(guó)天文學(xué)家首次測(cè)出了地月之間的距離大約為385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?
問(wèn)題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機(jī)從山頂一過(guò)便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車(chē)的速度呢?要想解決這些問(wèn)題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書(shū)課題《解三角形》)
[設(shè)計(jì)說(shuō)明]引用教材本章引言,制造知識(shí)與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
。ǘ┨厥馊胧,發(fā)現(xiàn)規(guī)律
問(wèn)題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問(wèn)題。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來(lái)嗎?
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類(lèi)比歸納,嚴(yán)格證明
問(wèn)題4:本題屬于初中問(wèn)題,而且比較簡(jiǎn)單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫(xiě)成了銳角⊿ABC,其它沒(méi)有變,你說(shuō)這個(gè)結(jié)論還成立嗎?
[設(shè)計(jì)說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
高中數(shù)學(xué)優(yōu)秀教案 2
教學(xué)目標(biāo)
(1)了解算法的含義,體會(huì)算法思想。
(2)會(huì)用自然語(yǔ)言和數(shù)學(xué)語(yǔ)言描述簡(jiǎn)單具體問(wèn)題的算法;
(3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問(wèn)題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。
教學(xué)重難點(diǎn)
重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。
難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。
情境導(dǎo)入
電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來(lái)說(shuō)也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:
第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);
第二步:瞄準(zhǔn)目標(biāo);
第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);
第五步:開(kāi)槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)
以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。
課堂探究
預(yù)習(xí)提升
1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類(lèi)問(wèn)題。
2、描述方式
自然語(yǔ)言、數(shù)學(xué)語(yǔ)言、形式語(yǔ)言(算法語(yǔ)言)、框圖。
3、算法的要求
(1)寫(xiě)出的算法,必須能解決一類(lèi)問(wèn)題,且能重復(fù)使用;
(2)算法過(guò)程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過(guò)有限步后能得出結(jié)果。
4、算法的特征
(1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。
(2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。
(3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。
(4)順序性:算法從初始步驟開(kāi)始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的.后續(xù)。
(5)不唯一性:解決同一問(wèn)題的算法可以是不唯一的
課堂典例講練
命題方向1對(duì)算法意義的理解
例1、下列敘述中,
、僦矘(shù)需要運(yùn)苗、挖坑、栽苗、澆水這些步驟;
、诎错樞蜻M(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;
③從青島乘動(dòng)車(chē)到濟(jì)南,再?gòu)臐?jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開(kāi)幕式;
、3x>x+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12。
能稱(chēng)為算法的個(gè)數(shù)為( )
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無(wú)窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結(jié)]
1、正確理解算法的概念及其特點(diǎn)是解決問(wèn)題的關(guān)鍵、
2、針對(duì)判斷語(yǔ)句是否是算法的問(wèn)題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問(wèn)題、
【變式訓(xùn)練】下列對(duì)算法的理解不正確的是________
、僖粋(gè)算法應(yīng)包含有限的步驟,而不能是無(wú)限的
、谒惴ǹ梢岳斫鉃橛苫具\(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟
、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果
④一個(gè)問(wèn)題只能設(shè)計(jì)出一個(gè)算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;
由對(duì)于同一個(gè)問(wèn)題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個(gè)算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒(méi)有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過(guò)回代方程求出方程組的解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結(jié)]1、本題用了2種方法求解,對(duì)于問(wèn)題的求解過(guò)程,我們既要強(qiáng)調(diào)對(duì)“通法、通解”的理解,又要強(qiáng)調(diào)對(duì)所學(xué)知識(shí)的靈活運(yùn)用。
2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問(wèn)題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。
【變式訓(xùn)練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問(wèn)題的算法設(shè)計(jì)
例3、設(shè)計(jì)一個(gè)算法,對(duì)任意3個(gè)整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過(guò)程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。
【變式訓(xùn)練】在下列數(shù)字序列中,寫(xiě)出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。
命題方向4非數(shù)值性問(wèn)題的算法
例4、一個(gè)人帶三只狼和三只羚羊過(guò)河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒(méi)有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。
(1)設(shè)計(jì)安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
高中數(shù)學(xué)優(yōu)秀教案 3
教學(xué)目標(biāo):
1.結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;
3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。
教學(xué)重點(diǎn):
通過(guò)實(shí)例理解分層抽樣的方法。
教學(xué)難點(diǎn):
分層抽樣的步驟。
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。
2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?
指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.
由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,
所以在各年級(jí)抽取的個(gè)體數(shù)依次是xx,xx,xx,即40,32,28。
三、建構(gòu)數(shù)學(xué)
1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。
說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔ⅲ箻颖揪哂休^好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。
2.三種抽樣方法對(duì)照表:
類(lèi)別
共同點(diǎn)
各自特點(diǎn)
相互聯(lián)系
適用范圍
簡(jiǎn)單隨機(jī)抽樣
抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的
從總體中逐個(gè)抽取
總體中的個(gè)體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣
總體中的`個(gè)體數(shù)較多
分層抽樣
將總體分成幾層,分層進(jìn)行抽取
各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
。1)分層:將總體按某種特征分成若干部分。
。2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。
(3)確定各層應(yīng)抽取的樣本容量。
。4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽。,綜合每層抽樣,組成樣本。
四、數(shù)學(xué)運(yùn)用
1.例題。
例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________。
(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;
、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格,F(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);
、勰嘲嘣┚蹠(huì),要產(chǎn)生兩名“幸運(yùn)者”。
對(duì)這三件事,合適的抽樣方法為()
A.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣
C.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣
D.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛(ài)
喜愛(ài)
一般
不喜愛(ài)
2435
4567
3926
1072
電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5。
然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取。
答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人
數(shù)分別為12,23,20,5。
說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。
。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本。
分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。
。2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。
。3)由于學(xué)校各類(lèi)人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系。
高中數(shù)學(xué)優(yōu)秀教案 4
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對(duì)圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義解題
六、教學(xué)過(guò)程設(shè)計(jì)
【設(shè)計(jì)思路】
(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
一上課,我就直截了當(dāng)?shù)亟o出例題1:
(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的`定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
(二)理解定義、解決問(wèn)題
例2:
(1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|
【設(shè)計(jì)意圖】
運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類(lèi)問(wèn)題。例2的設(shè)置就是為了方便學(xué)生的辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫(xiě)出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問(wèn)題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。
(三)自主探究、深化認(rèn)識(shí)
如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。
練習(xí):
設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?
【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,
可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。
【知識(shí)鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。
4、例題:
(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。
(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。
2、利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。
總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
高中數(shù)學(xué)優(yōu)秀教案 5
一、預(yù)習(xí)目標(biāo)
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,建立實(shí)際問(wèn)題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問(wèn)題、物理問(wèn)題。另外,在思考一下幾個(gè)問(wèn)題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問(wèn)題的“三步曲”是什么?
3、例3中,
、艦楹沃禃r(shí),|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。
課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問(wèn)題。
2、運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問(wèn)題。
二、學(xué)習(xí)過(guò)程
探究一:
。1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類(lèi)比,你有什么體會(huì)?
。2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。
例1、證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個(gè)問(wèn)題,利用向量的方法解決平面幾何問(wèn)題的“三步曲”?
。1)建立平面幾何與向量的聯(lián)系,
(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,
。3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。
例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?
探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問(wèn)題是怎么回事?
例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?
請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:
⑴為何值時(shí),|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問(wèn)行駛航程最短時(shí),所用的.時(shí)間是多少(精確到0。1min)?
變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為,(1)寫(xiě)出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在方向上的投影。
三、反思總結(jié)
結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問(wèn)題,體現(xiàn)幾何問(wèn)題。
代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問(wèn)題常用此法。
本節(jié)主要研究了用向量知識(shí)解決平面幾何問(wèn)題和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問(wèn)題的步驟。
高中數(shù)學(xué)優(yōu)秀教案 6
教學(xué)目的:
掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問(wèn)題
教學(xué)重點(diǎn):
圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用
教學(xué)難點(diǎn):
標(biāo)準(zhǔn)方程的靈活運(yùn)用
教學(xué)過(guò)程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識(shí),鞏固練習(xí)
練習(xí):
1、說(shuō)出下列圓的方程
⑴圓心(3,—2)半徑為5
⑵圓心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
、苮2+y2=2
⑶x2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過(guò)p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(guò)(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(—10,0)、B(10,0)、C(0,4),求圓的.方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)優(yōu)秀教案 7
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過(guò)程與方法】
經(jīng)歷三角函數(shù)的`單調(diào)性的探索過(guò)程,提升邏輯推理能力。
【情感態(tài)度價(jià)值觀】
在猜想計(jì)算的過(guò)程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【教學(xué)難點(diǎn)】
探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過(guò)程。
三、教學(xué)過(guò)程
。ㄒ唬┮胄抡n
提出問(wèn)題:如何研究三角函數(shù)的單調(diào)性
。ㄋ模┬〗Y(jié)作業(yè)
提問(wèn):今天學(xué)習(xí)了什么?
引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過(guò)程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
高中數(shù)學(xué)優(yōu)秀教案 8
一、教材分析:
集合概念及其基本理論,稱(chēng)為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點(diǎn)。難點(diǎn)
重點(diǎn):集合的含義與表示方法。
難點(diǎn):表示法的恰當(dāng)選擇。
教學(xué)目標(biāo)
1.知識(shí)與技能
(1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專(zhuān)用記號(hào);
(3)了解集合中元素的確定性;ギ愋。無(wú)序性;
(4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;
2.過(guò)程與方法
(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí)。
3.情感。態(tài)度與價(jià)值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。
三、教法分析
1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。
2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。
四。過(guò)程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問(wèn)題:
(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。
(2)問(wèn)題:像“家庭”、“學(xué)!、“班級(jí)”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。
2.活動(dòng):
(1)列舉生活中的集合的例子;
(2)分析、概括各實(shí)例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:
(1)1—20以?xún)?nèi)的所有質(zhì)數(shù);
(2)我國(guó)古代的四大發(fā)明;
(3)所有的安理會(huì)常任理事國(guó);
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
(7)國(guó)興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。一般地,指定的某些對(duì)象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集).集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素。
4.教師指出:集合常用大寫(xiě)字母A,B,C,D表示,元素常用小寫(xiě)字母a,b,c,d表示。
設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性、互異性和無(wú)序性。只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等。
2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:
判斷以下元素的全體是否組成集合,并說(shuō)明理由:
(1)大于3小于11的偶數(shù);
(2)我國(guó)的小河流。讓學(xué)生充分發(fā)表自己的建解。
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由。教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià)。
4.教師提出問(wèn)題,讓學(xué)生思考
b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果a是集合A的元素,就說(shuō)a屬于集合A
如果a不是集合A的元素,就說(shuō)a不屬于集合A
(2)如果用A表示“所有的安理會(huì)常任理事國(guó)”組成的集合,則中國(guó)。日本與集合A的'關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示。
(3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題。
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫(xiě)出常用數(shù)集的記號(hào)。并讓學(xué)生完成習(xí)題1.1A組第1題。
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問(wèn)題:
(1)要表示一個(gè)集合共有幾種方式?
(2)試比較自然語(yǔ)言。列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對(duì)象是什么?
(3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。
設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí)
(1)用自然語(yǔ)言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題。
設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象
(五)歸納小結(jié),布置作業(yè)
1.小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:
本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?
2.你認(rèn)為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時(shí)應(yīng)注意些什么?
設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書(shū)面作業(yè):第13頁(yè)習(xí)題1.1A組第4題
2.元素與集合的關(guān)系有多少種?如何表示?類(lèi)似地集合與集合間的關(guān)系又有多少種呢?如何表示?請(qǐng)同學(xué)們通過(guò)預(yù)習(xí)教材。
高中數(shù)學(xué)優(yōu)秀教案 9
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:理解并掌握等比數(shù)列的性質(zhì),能夠初步應(yīng)用這些性質(zhì)解決數(shù)學(xué)問(wèn)題。
2. 過(guò)程與方法:通過(guò)觀察、類(lèi)比、猜測(cè)等推理方法,提高學(xué)生分析、綜合、抽象、概括等邏輯思維能力。
3. 情感態(tài)度價(jià)值觀:體會(huì)類(lèi)比在研究新事物中的作用,了解知識(shí)間存在的共同規(guī)律,激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):等比數(shù)列的性質(zhì)及其應(yīng)用。
難點(diǎn):等比數(shù)列性質(zhì)的.應(yīng)用,特別是復(fù)雜情境下的數(shù)學(xué)建模。
三、教學(xué)過(guò)程
1. 導(dǎo)入新課
復(fù)習(xí)等比數(shù)列的定義和通項(xiàng)公式,通過(guò)實(shí)例引入等比數(shù)列性質(zhì)的學(xué)習(xí)。
2. 新課講授
性質(zhì)探究:通過(guò)小組討論,引導(dǎo)學(xué)生觀察等比數(shù)列的通項(xiàng)公式,類(lèi)比等差數(shù)列的性質(zhì),猜想并證明等比數(shù)列的性質(zhì)(如等比數(shù)列中任意兩項(xiàng)的比值相等,即公比q)。
例題講解:選取典型例題,講解如何利用等比數(shù)列的性質(zhì)解決問(wèn)題,強(qiáng)調(diào)解題步驟和思路。
3. 鞏固練習(xí)
設(shè)計(jì)不同難度的練習(xí)題,包括直接應(yīng)用性質(zhì)和需要一定推理的題目,讓學(xué)生在練習(xí)中鞏固所學(xué)知識(shí)。
4. 總結(jié)提升
引導(dǎo)學(xué)生總結(jié)等比數(shù)列的性質(zhì)及其應(yīng)用,強(qiáng)調(diào)類(lèi)比思維在數(shù)學(xué)學(xué)習(xí)中的重要性。
布置課外作業(yè),包括基礎(chǔ)題和拓展題,鼓勵(lì)學(xué)生進(jìn)一步探索等比數(shù)列的應(yīng)用。
高中數(shù)學(xué)優(yōu)秀教案 10
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:使學(xué)生正確理解組合的意義,掌握組合數(shù)的計(jì)算公式,能夠解決簡(jiǎn)單的組合問(wèn)題。
2. 過(guò)程與方法:通過(guò)問(wèn)題導(dǎo)向的教學(xué)方法,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的.能力,以及類(lèi)比的學(xué)習(xí)方法。
3. 情感態(tài)度價(jià)值觀:激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的邏輯思維能力和創(chuàng)新精神。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):組合的定義、組合數(shù)及組合數(shù)的公式。
難點(diǎn):解組合的應(yīng)用題,特別是需要靈活運(yùn)用組合公式解決實(shí)際問(wèn)題的情境。
三、教學(xué)過(guò)程
1. 導(dǎo)入新課
通過(guò)生活中的實(shí)例(如從幾個(gè)不同元素中選取幾個(gè)元素組成一組)引入組合的概念,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2. 新課講授
定義講解:明確組合的定義,即從n個(gè)不同元素中取出m個(gè)元素(m≤n)并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。
公式推導(dǎo):通過(guò)實(shí)例講解組合數(shù)的計(jì)算公式C(n,m)=n!/[m!(n-m)!],并引導(dǎo)學(xué)生理解公式的含義和推導(dǎo)過(guò)程。
例題講解:選取典型例題,講解如何利用組合公式解決組合問(wèn)題,強(qiáng)調(diào)解題步驟和思路。
3. 鞏固練習(xí)
設(shè)計(jì)不同難度的練習(xí)題,包括直接應(yīng)用組合公式和需要一定推理的題目,讓學(xué)生在練習(xí)中鞏固所學(xué)知識(shí)。
4. 總結(jié)提升
引導(dǎo)學(xué)生總結(jié)組合的概念、組合數(shù)的計(jì)算公式及其應(yīng)用,強(qiáng)調(diào)類(lèi)比思維在解決組合問(wèn)題中的重要性。
布置課外作業(yè),包括基礎(chǔ)題和拓展題,鼓勵(lì)學(xué)生進(jìn)一步探索組合的應(yīng)用。
高中數(shù)學(xué)優(yōu)秀教案 11
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:理解并掌握等比數(shù)列的性質(zhì),并能夠初步應(yīng)用這些性質(zhì)解決相關(guān)問(wèn)題。
2. 過(guò)程與方法:通過(guò)觀察、類(lèi)比、猜測(cè)等推理方法,提高學(xué)生分析、綜合、抽象、概括等邏輯思維能力。
3. 情感態(tài)度價(jià)值觀:體會(huì)類(lèi)比在研究新事物中的作用,了解知識(shí)間存在的共同規(guī)律,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣和熱愛(ài)。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):等比數(shù)列的性質(zhì)及其應(yīng)用。
難點(diǎn):等比數(shù)列性質(zhì)的應(yīng)用,特別是解決復(fù)雜問(wèn)題時(shí)如何靈活運(yùn)用這些性質(zhì)。
三、教學(xué)過(guò)程
1. 復(fù)習(xí)引入
回顧等差數(shù)列的定義、通項(xiàng)公式及性質(zhì)。
引導(dǎo)學(xué)生對(duì)比等差數(shù)列,思考等比數(shù)列的定義及可能具有的性質(zhì)。
2. 新課講授
定義講解:明確等比數(shù)列的定義,即一個(gè)數(shù)列,若從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)之比都是同一個(gè)非零常數(shù),則這個(gè)數(shù)列是等比數(shù)列。
性質(zhì)推導(dǎo):通過(guò)類(lèi)比等差數(shù)列的性質(zhì),引導(dǎo)學(xué)生猜想并推導(dǎo)等比數(shù)列的性質(zhì)。例如,等比數(shù)列中任意兩項(xiàng)的比值相等,通項(xiàng)公式為$a_n = a_1 \times q^{(n-1)}$等。
例題講解:通過(guò)具體例題,展示如何應(yīng)用等比數(shù)列的性質(zhì)解決問(wèn)題。
3. 探究活動(dòng)
小組研討:分組讓學(xué)生根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派代表講解練習(xí)。
性質(zhì)證明:選取幾個(gè)重要的'性質(zhì)進(jìn)行證明,如等比數(shù)列中項(xiàng)的性質(zhì)、求和公式等。
4. 鞏固練習(xí)
設(shè)計(jì)一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識(shí)。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點(diǎn)內(nèi)容,強(qiáng)調(diào)等比數(shù)列的性質(zhì)及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進(jìn)一步鞏固和拓展學(xué)生的知識(shí)。
高中數(shù)學(xué)優(yōu)秀教案 12
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:使學(xué)生正確理解組合的意義,掌握組合數(shù)的計(jì)算公式,并學(xué)會(huì)應(yīng)用組合知識(shí)解決實(shí)際問(wèn)題。
2. 過(guò)程與方法:通過(guò)提出問(wèn)題、創(chuàng)設(shè)情境、歸納概括等教學(xué)方法,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
3. 情感態(tài)度價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和探索精神。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):組合的定義、組合數(shù)及組合數(shù)的.公式。
難點(diǎn):解組合的應(yīng)用題,特別是如何將實(shí)際問(wèn)題抽象為組合問(wèn)題并求解。
三、教學(xué)過(guò)程
1. 導(dǎo)入新課
提出問(wèn)題:如“一條鐵路線上有6個(gè)火車(chē)站,需準(zhǔn)備多少種不同的普通客車(chē)票?有多少種不同票價(jià)的普通客車(chē)票?”引導(dǎo)學(xué)生思考并區(qū)分排列與組合問(wèn)題。
2. 新課講授
定義講解:明確組合的定義,即從n個(gè)不同元素中取出m個(gè)元素并成一組(m≤n),叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。
公式推導(dǎo):通過(guò)分步計(jì)數(shù)原理推導(dǎo)出組合數(shù)的計(jì)算公式$C_n^m = \frac{n!}{m!(n-m)!}$。
例題講解:通過(guò)具體例題展示如何應(yīng)用組合數(shù)的計(jì)算公式解決問(wèn)題。
3. 歸納概括
總結(jié)組合的定義、性質(zhì)及計(jì)算公式,強(qiáng)調(diào)組合與排列的區(qū)別。
4. 鞏固練習(xí)
設(shè)計(jì)一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識(shí)并學(xué)會(huì)應(yīng)用。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點(diǎn)內(nèi)容,強(qiáng)調(diào)組合的意義及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進(jìn)一步鞏固和拓展學(xué)生的知識(shí)。
【高中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:
高中數(shù)學(xué)優(yōu)秀教案4篇11-18
高中數(shù)學(xué)優(yōu)秀教案(4篇)11-19
高中數(shù)學(xué)優(yōu)秀教案精選5篇06-17
高中數(shù)學(xué)優(yōu)秀教案(8篇)11-07
高中數(shù)學(xué)優(yōu)秀教案7篇01-11