平行四邊形的性質(zhì)
平行四邊形的性質(zhì)1
平行四邊形的`性質(zhì)(下載:)平行四邊形的性質(zhì)
平行四邊形的性質(zhì)2
這周我們學(xué)校進行“全員參與課堂技能達標(biāo)活動”。今天第二節(jié)是我講課。講課的題目是第四章《探索四邊形的性質(zhì)》的第一節(jié)《平行四邊形的性質(zhì)》。
本節(jié)課的學(xué)習(xí)目標(biāo)是:理解并掌握平行四邊形的定義,掌握平行四邊形對邊相等、對角相等的性質(zhì)。我課前讓學(xué)生剪好兩個全等三角形,我自己也做好了兩個全等三角形教具。
我覺得本節(jié)課的成功之處:
1.在課堂上主要是通過讓學(xué)生自己動手拼、擺,探索得出平行四邊形的定義和性質(zhì),并結(jié)合上一章學(xué)習(xí)的圖形變換得出兩個全等三角形如何變換成平行四邊形。
2.整個課堂我盡力把主體交給學(xué)生,讓學(xué)生自己操作、探索得出定義和性質(zhì),并讓學(xué)生說出理由。
3.板書設(shè)計條理,能對本節(jié)課的知識點進行系統(tǒng)歸納,便于學(xué)生理解和掌握。
4.在學(xué)生分組上黑板做完檢測題,讓組長評價。
下課后和同事交流,他們對我的這節(jié)課提出了切實的建議:
1、全等三角形的`教具最好用兩個不同的顏色,而且標(biāo)清角的符號,便于學(xué)生區(qū)別。
2.在組長評價完后,教師應(yīng)作適當(dāng)點撥,對出現(xiàn)的問題強調(diào),并要求改正。
3.平行四邊形的舉例應(yīng)在認識了什么是平行四邊形后就進行。
每次聽課前,我都在思考怎么樣上課才能更好的讓學(xué)生接受,但自己總是準備不充分,不能對課堂上的環(huán)節(jié)和細節(jié)做預(yù)設(shè),希望自己在以后的工作中能夠更細心一些,使自己的課堂更完美。
平行四邊形的性質(zhì)3
1、本節(jié)課在改革教法,優(yōu)化教法方面作了一些嘗試。在教學(xué)中,采用了“觀察——猜想——驗證”的方法,讓定理的教學(xué)充分展現(xiàn)知識的發(fā)生、發(fā)展過程,既對定理的產(chǎn)生有探索過程,又對論證方法有發(fā)現(xiàn)過程,既教發(fā)現(xiàn),又教證明。
2、在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥,給學(xué)生留有較充分的時間去探究各個性質(zhì)定理,進一步提高學(xué)生分析問題、解決問題的能力。由于定理是學(xué)生自己探討發(fā)現(xiàn)的,因此,學(xué)生用起來更加得心應(yīng)手。而后通過對比練習(xí),再次熟悉,使學(xué)生的認識不斷深化,提高層次,逐步提高學(xué)生的知識水平和能力水平。
3、在以后的幾課時里,由學(xué)生討論課本例、習(xí)題,或獨立作業(yè),教師適當(dāng)點撥。在證明命題的過程中,學(xué)生自然將各條性質(zhì)進行對比和選擇,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一性質(zhì)上的`運用上。學(xué)生在不同題目的對比中,在一題不同解法的對比中,能力真正得到提高。
平行四邊形的性質(zhì)4
平行四邊形的性質(zhì)這一節(jié)課是本章的第一節(jié),也是本章重點內(nèi)容之一,它在本章中起著承上啟下的作用,并為我們接下來研究各種特殊平行四邊形——矩形、菱形、正方形等奠定重要基礎(chǔ);而平行四邊形性質(zhì)的探索需要借助我們已學(xué)過的平行線、三角形全等和四邊形的內(nèi)角和等相關(guān)知識,并且為證明線段相等和角相等提供重要依據(jù)和方法。因此,上好這一節(jié)課非常關(guān)鍵,既不能讓學(xué)生感覺太難,也不能讓他們糊弄過關(guān)。
所以,我在設(shè)計本節(jié)課時就遵循著這個原則,希望讓學(xué)生能在親身的動手操作中體會它的性質(zhì),并用心感受平行四邊形在實際生活中的廣泛應(yīng)用。下面具體就每個環(huán)節(jié)進行簡單的闡述:
環(huán)節(jié)一:感悟生活。
我先讓學(xué)生欣賞幾幅生活中的美麗圖片,讓他們從感性認識中體會平行四邊形在日常生活中無處不在無處不用,從而體會數(shù)學(xué)的自然美,激發(fā)學(xué)習(xí)熱情,然后給出平行四邊形的定義。從定義出發(fā),我設(shè)計了一個小練習(xí)讓他們判斷,體會平行四邊形的符號語言,并順利得到第一個性質(zhì)。
環(huán)節(jié)二:性質(zhì)的探究
平行四邊形的性質(zhì)是本節(jié)課的重點,而探究性質(zhì)更是本節(jié)課的難點,所以在這個環(huán)節(jié)里我需要把難點擊破,那就需要學(xué)生進行配合,教學(xué)相長。實踐出真知!我通過小組合作的方式讓學(xué)生自己動手操作,結(jié)合“想一想、量一量、拼一拼”等過程,尤其是對兩個全等三角形進行拼湊成平行四邊形,使他們實際操作中驗證性質(zhì)的成立并能從中體會性質(zhì)的證明思路。通過小組間的合作交流學(xué)習(xí),進行有的放矢的探究活動,把平行四邊形轉(zhuǎn)化為我們熟知的三角形,由已知探未知,從中形成科學(xué)的“猜想——驗證——實驗”的解題思路,養(yǎng)成科學(xué)的學(xué)習(xí)習(xí)慣。這是從感性認識到理性認識的一個飛躍過程。
環(huán)節(jié)三:例題精講。
在這里我設(shè)計了兩個例題,一個是課本的例題,是已知一條邊和周長,求另外的三條邊。這是比較簡單的一個問題,所以我在講解的時候沒有花費過多的時間,只是點到為止,而把重點放在了第二個例題,因為它是綜合性的,既存在邊的性質(zhì)方面,也需要求解角的問題。在這個例題上,我通過讓學(xué)生自己進行分析,從中找出解題關(guān)鍵,結(jié)合新舊知識的聯(lián)結(jié),讓學(xué)生形成知識脈絡(luò),進而口頭描述思維過程,養(yǎng)成參與課堂教學(xué)的習(xí)慣,也使學(xué)生能更充分展現(xiàn)對知識的掌握和學(xué)習(xí)成果。
環(huán)節(jié)四:小試牛刀和拓展提高。
首先,我通過設(shè)計簡單的練習(xí),讓學(xué)生立刻檢測出課堂知識的掌握情況,并讓他們感受性質(zhì)的實際應(yīng)用。接著,為了進一步拓展加深學(xué)生對性質(zhì)的`理解,拓展學(xué)生的思維,形成個體之間獨立的解題思維方式,我設(shè)置了拓展提高部分的聯(lián)系,有助于開拓學(xué)生的視野。
這兩部分的練習(xí),由淺入深,由易進難,具有一定的梯度,使學(xué)生的能力逐步加強,并體現(xiàn)因材施教的原則。同時,因為本章課標(biāo)明確要求學(xué)生能夠嚴格遵照說理過程,所以我在得出平行四邊形性質(zhì)的同時加上幾何語言的描述,在練習(xí)中也明確強調(diào)規(guī)范學(xué)生的解題規(guī)范。
環(huán)節(jié)五:感悟收獲與課堂總結(jié)。
通過本節(jié)課的學(xué)習(xí),讓學(xué)生體會本節(jié)課的知識點及其應(yīng)用,再一次總結(jié)歸納,形成知識脈絡(luò),并通過學(xué)生自己講述心得體會,既加深知識的掌握,同時也鍛煉了學(xué)生與他人分享學(xué)習(xí)心得的過程與收獲,并從中得到成功的喜悅,從而對數(shù)學(xué)的學(xué)習(xí)更加有興趣更加有自信。
這一節(jié)課的設(shè)計經(jīng)過了幾次的反復(fù)的修改,算是有了一定的成功,也謝謝各位老師一直的指導(dǎo)和支持。下面我具體說說對于這節(jié)課的幾點反思。
一、本節(jié)課的教學(xué)設(shè)計具有以下幾個特點:
1、在引入時通過對生活中的幾幅精美圖片的欣賞,讓學(xué)生由最熟悉的生活場景入手,使學(xué)生體會數(shù)學(xué)無處不在,數(shù)學(xué)無處不用的情景,增強了學(xué)生的感性認識,從而激發(fā)了學(xué)生的學(xué)習(xí)熱情。
2、通過探究式教學(xué)法,把課堂的自主權(quán)交給學(xué)生,讓學(xué)生真正成為課堂的主人,而不再是傳統(tǒng)教學(xué)當(dāng)中學(xué)生就是被“填鴨式”的盲目接受教學(xué)結(jié)論,充分體現(xiàn)了學(xué)生的主體作用,尤其在拼接平行四邊形的過程中,對學(xué)生進行分組,讓學(xué)生自己動手,自己歸納結(jié)論,突出了重點并突破了難點。通過合作交流的學(xué)習(xí)方式,培養(yǎng)學(xué)生的實際操作能力和互助的學(xué)習(xí)技能,同時提高了學(xué)生的學(xué)習(xí)熱情,把枯燥乏味的數(shù)學(xué)教學(xué)活動轉(zhuǎn)變?yōu)樯鷦佑腥さ男〗M學(xué)習(xí)活動,更加有利于學(xué)生對知識的理解和掌握,在此過程中,更注重學(xué)生數(shù)學(xué)解題思維的能力培養(yǎng),充分體現(xiàn)了教師主導(dǎo)下的學(xué)生主體地位,符合新課標(biāo)的要求,更有利于教學(xué)相長。
3、通過分組討論學(xué)習(xí)和學(xué)生自己動手操作和歸納,加強了學(xué)生在教學(xué)過程中的實踐活動,也使學(xué)生之間的合作意識更強,與同學(xué)交流學(xué)習(xí)心得的氣氛更濃厚,從而加深了同學(xué)之間的友誼和師生之間的教學(xué)和諧,使得教學(xué)過程更加流暢,促進教學(xué)相長。
4、本節(jié)課的教學(xué)環(huán)節(jié)方面設(shè)計的比較好,從引入到定義,到探究到性質(zhì)講述,再到例題和練習(xí),最后總結(jié)歸納,環(huán)環(huán)相扣,緊密有度,并且知識的應(yīng)用比較到位,練習(xí)具有較好梯度,學(xué)生學(xué)習(xí)起來比較順暢。
5、本節(jié)課的課件,在設(shè)計過程中,畫面精美,顏色鮮艷,動畫效果在演示當(dāng)中流暢自然,背景切合教學(xué)實際,頁面切換均讓人耳目一新,既符合課堂的教學(xué)內(nèi)容,更使得上課的學(xué)生和聽課的老師把注意力集中在課件上,增加了課件的趣味性和知識性,也贏得了老師們的認可。
6、個人教態(tài)方面,通過各種鼓勵方式充分調(diào)動學(xué)生的積極性,盡量使自己能融入學(xué)生當(dāng)中,建立平等的師生關(guān)系,從而使課堂教學(xué)順利進行。同時在提問方面,具有啟發(fā)性和針對性,能讓學(xué)生思維在集中當(dāng)中發(fā)散開來,從而有的放矢,也節(jié)省了課堂的時間。
7、上課時間分配上把握得比較恰當(dāng),一節(jié)課40分鐘,約10分鐘進行定義的引入和講述,5分鐘的學(xué)生動手操作,10分鐘的例題講解,15分鐘的練習(xí)與總結(jié)。
二、本節(jié)課在教學(xué)實施中還有以下幾個不足之處:
1、在對學(xué)生的解題過程中說理能力上強調(diào)的不夠。初二學(xué)生對平面圖形的認識能力剛剛形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會用準確的符號語言進行正確的說理。而我在教學(xué)中,由于趕時間,所以這部分知識過的比較快,可能對于基礎(chǔ)比較差的學(xué)生有一定的困難。
2、在例題講解中時間的把握不是很到位,顯得有點倉促。在分析例題的時候,由于例一比較簡單(相對于優(yōu)分班的同學(xué)而言),所以我基本上沒有詳細解答,只是簡單分析了一下題意;而在例二中,由于過分在意學(xué)生的自學(xué)能力,缺乏了較好的引導(dǎo),所以容易被學(xué)生“蒙騙過關(guān)”,沒有“顧全大局”,沒有很好的進行板書和照顧基礎(chǔ)稍微弱一點的學(xué)生,所以容易使得這部分的同學(xué)對于本題有點一知半解,沒有掌握扎實。
3、學(xué)生缺乏“表演”的機會。在本節(jié)教學(xué)過程中,教師比較偏向于跟學(xué)生集體回答,使學(xué)生個體“表演”的機會計較缺乏,而且經(jīng)常是帶著學(xué)生一起解題,所以失去了個體的作用,也不能很好地體現(xiàn)個體學(xué)習(xí)的效果,在以后的教學(xué)中要注意多一點讓學(xué)生自己表達觀點和看法,給充分的時間讓他們準備,從而也給予充足的鼓勵給他們表現(xiàn),才能使人人均有想學(xué)想表達的愿望。
4、對于某些問題上,數(shù)學(xué)語言不夠規(guī)范化。對于本節(jié)課是平行四邊形這一章的第一課時,所以對于平行四邊形的表示方式特別注重強調(diào),要從一開始就給學(xué)生進行規(guī)范化,那么他們在以后的知識中才能更好地用數(shù)學(xué)語言進行規(guī)范化解題和證明,所以需要多加強調(diào)。
課程改革為我們帶來了新的教學(xué)觀念,也為學(xué)生發(fā)展提供了更廣闊的空間,在本節(jié)課的教學(xué)中,使我意識到,凡是學(xué)生能自己探究出來的,教師決不能取代,凡是學(xué)生能獨立發(fā)現(xiàn)的,教師也千萬不能埋沒。讓學(xué)生從學(xué)習(xí)中學(xué)會思考,學(xué)會交流,盡可能給學(xué)生一些空間,給他們表現(xiàn)的機會,使學(xué)生成為知識的探索者和發(fā)現(xiàn)者,徜徉知識的海洋。
平行四邊形的性質(zhì)5
本節(jié)課通過多媒體課件展示學(xué)生熟悉的實際問題中的圖片情境引入,激發(fā)學(xué)生的興趣,也加強了與實際生活的聯(lián)系。讓學(xué)生經(jīng)歷從實際問題中抽象出數(shù)學(xué)概念的過程,發(fā)展學(xué)生的抽象、概括、歸納的能力。通過拼圖獲得豐富的感性認識,引導(dǎo)學(xué)生探究平行四邊形的性質(zhì),解決平行四邊形的有關(guān)問題經(jīng)常連接對角線轉(zhuǎn)化為前面所學(xué)習(xí)的三角形。
通過多媒體信息技術(shù)的應(yīng)用可以把一些圖片形象的展現(xiàn)給學(xué)生,可以為整節(jié)課提高效率,可以把一些題目很快的展現(xiàn)給大家,一些很難理解、復(fù)雜的東西可以通過視頻讓學(xué)生清晰的看到。
課堂中還存在一些不足之處:
1。學(xué)生在自主探索概念和性質(zhì)時,學(xué)生較容易通過直觀操作得到概念,探索出對邊相等,對角相等的性質(zhì),但是在用圖形平移,旋轉(zhuǎn)驗證平行四邊形的性質(zhì)時,部分同學(xué)存在困難,所以教學(xué)時應(yīng)通過實物演示或多媒體動畫幫助學(xué)生理解圖形的`變換,引導(dǎo)學(xué)生得出性質(zhì)。
2。學(xué)生在對性質(zhì)的說理和簡單的推理論證時,一些學(xué)生說理的過程缺乏嚴謹,在教學(xué)過程中不能急于求成,應(yīng)該注意引導(dǎo)。而且在今后學(xué)習(xí)中,不斷地訓(xùn)練學(xué)生“能清晰,有條理地表達自己的思考過程,做到言之有理,落筆有據(jù)”的意識。
平行四邊形的性質(zhì)6
本節(jié)課以學(xué)生習(xí)以為常的“平行光線在室內(nèi)的投影”為情境引出課題,激起學(xué)生強烈的好奇心和求知欲.使學(xué)生不知不覺中走入數(shù)學(xué)王國,經(jīng)歷了將實際問題抽象為數(shù)學(xué)問題的建模過程實踐探究,把學(xué)生置于結(jié)論的發(fā)現(xiàn)過程。
首先,將枯燥的概念教學(xué)賦予有趣的實際背景,使教學(xué)內(nèi)容更生動、更鮮活.通過拼圖游戲,讓學(xué)生經(jīng)歷了平行四邊形概念的探究過程,自然而然地形成平行四邊形的概念,符合學(xué)生的認知規(guī)律.再通過對拼出的四邊形分類,進一步加深學(xué)生對概念本質(zhì)的理解.
其次,遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的認知規(guī)律,對教材內(nèi)容進行了重組加工,將教材中平行四邊形性質(zhì)的探究活動完全開放.為學(xué)生提供了自主合作探究的舞臺,營造了思維馳騁的空間,激發(fā)了學(xué)生思維創(chuàng)新的火花.變式訓(xùn)練,把學(xué)生置于創(chuàng)新思維的深入培養(yǎng)過程。把書中一道命題證明的練習(xí)題改編成有趣的實驗操作型問題,做到源于教材,活于教材.使學(xué)生學(xué)會用運動、變化的觀點分析問題,從而培養(yǎng)學(xué)生思維的嚴謹性、發(fā)散性、靈活性,達到舉一反三的.作用.最大限度地發(fā)揮學(xué)生的潛能,活躍思維,培養(yǎng)學(xué)生的合作意識、創(chuàng)新精神.反思小結(jié),把學(xué)生置于知識系統(tǒng)建立的過程中。這節(jié)課的結(jié)尾,既有對課堂知識的系統(tǒng)小結(jié),又有對思想方法的高度凝煉,提升學(xué)生思維品質(zhì),讓學(xué)生獲得可持續(xù)發(fā)展的動力.板書設(shè)計充分體現(xiàn)了本節(jié)課的學(xué)習(xí)要點,給學(xué)生留下清晰的記憶.
平行四邊形的性質(zhì)7
《探索平行四邊形的性質(zhì)》是在學(xué)生具備“三角形全等”的知識、學(xué)習(xí)了“軸對稱、平移、旋轉(zhuǎn)”之后,進而學(xué)習(xí)“四邊形”一章的起始課。本節(jié)課的探索方法與思想將導(dǎo)引學(xué)生進行后續(xù)學(xué)習(xí)“菱形、矩形、正方形和等腰梯形、多邊形”的相關(guān)知識。因此,在本節(jié)課中,大量的“學(xué)生實驗操作——細心觀察——學(xué)生發(fā)現(xiàn)——進行推理驗證”這種模式導(dǎo)引、滲透是否到位將直接影響本章的學(xué)習(xí)效果。故在教學(xué)中,著重使學(xué)生在學(xué)習(xí)過程中體會“實驗——觀察——猜想發(fā)現(xiàn)——驗證” 這一探究問題的方法。使學(xué)生在合作交流的愉悅中得到知識,獲取科學(xué)的學(xué)習(xí)方法。
本節(jié)課開始時學(xué)生有些緊張,經(jīng)過兩個“互動平臺”和“想一想”、“議一議”等環(huán)節(jié)促使學(xué)生探索交流的積極性高漲。體現(xiàn)在對“平行四邊形性質(zhì)”探索時的.推理論證,學(xué)生思維活躍,發(fā)言積極;在“新知應(yīng)用2”證明線段DE=BF時,討論時的積極熱烈,讓我感動和欣慰;在達標(biāo)測評環(huán)節(jié)中,學(xué)生能獨立冷靜思考,有理有據(jù)地講明理由;在“做一做”的活動中,學(xué)生思維深刻,靈活性強?梢,前面的交流與探索已水到渠成。課堂中一個學(xué)生的“雙語”使用,給我們的課堂又加了點“糖”,同時也提醒我要不斷提高自己,才能使學(xué)生更加信服你,愛戴你;從學(xué)生隨堂練習(xí)展示中,部分學(xué)生忘記輔助線作法,提示我在教學(xué)中對此的強調(diào)可能還欠火候。本節(jié)課我為學(xué)生創(chuàng)設(shè)了大量的數(shù)學(xué)活動和交流的空間,使他們在合作交流中進步。
《數(shù)學(xué)課程標(biāo)準》中指出“學(xué)生學(xué)習(xí)的數(shù)學(xué)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學(xué)生主動進行觀察、實驗、猜測、驗證、推理、交流等數(shù)學(xué)活動”,在探索平行四邊形的性質(zhì)中,我設(shè)計了“我的發(fā)現(xiàn)、想一想、議一議、做一做”等環(huán)節(jié),使學(xué)生深刻感受到探索的價值,體驗成功的喜悅,感受數(shù)學(xué)中的“轉(zhuǎn)化、化歸”思想。本節(jié)教學(xué)過程中,我為學(xué)生創(chuàng)設(shè)了數(shù)學(xué)活動和交流的空間。 通過“實驗—觀察—猜想—發(fā)現(xiàn)—探究—推理驗證—模仿體驗”完成本節(jié)知識的學(xué)習(xí),學(xué)生討論積極熱烈,合作學(xué)習(xí)愉悅,他們在合作交流中增長了知識,積累了經(jīng)驗,發(fā)展了思維,提高了能力。
數(shù)學(xué)學(xué)習(xí)的核心之一就是要發(fā)展學(xué)生的思維能力。在教學(xué)中,我通過教學(xué)內(nèi)容的設(shè)計,盡力幫助學(xué)生將所學(xué)的知識“理解”、“遷移”與“旁通”。
平行四邊形的性質(zhì)8
承接上一章的內(nèi)容,課本的設(shè)計意圖是利用圖形平移和旋轉(zhuǎn)的特征來得出平行四邊形的性質(zhì)。我在設(shè)計本節(jié)課時就遵循著這個原則,先讓學(xué)生看圖片,體會到平行四邊形在日常生活中的廣泛應(yīng)用,給出平行四邊形的定義,從定義出發(fā)得到第一個性質(zhì),再由學(xué)生動手操作和教師演示旋轉(zhuǎn)得到其他性質(zhì)。因為本章課標(biāo)明確要求學(xué)生能夠嚴格說理過程,所以我在得出平行四邊形性質(zhì)的`同時加上幾何語言的描述,在練習(xí)中也注意規(guī)范學(xué)生的說理過程。
由于時間的關(guān)系,再加上,總認為學(xué)生已經(jīng)有了小學(xué)知識的鋪墊,就舍去了讓學(xué)生動手實驗操作探究的部分,而教師的演示又遲了一步,這就忽略了學(xué)生知識形成的過程!使得這堂課總覺得缺少些東西。
小結(jié)部分也做得較匆忙,應(yīng)由學(xué)生自己歸納本節(jié)課的內(nèi)容,把性質(zhì)按邊、角歸納,再加上幾何符號的敘述那就更完整了。從練習(xí)看,部分學(xué)生的幾何語言表述不夠嚴謹,書寫格式較混亂。
通過對本節(jié)課的回顧,我覺得下次上本課內(nèi)容時應(yīng)重點突出以下幾個方面:
一、新課講解過程,要讓學(xué)生通過觀察、拼一拼、折一折、量一量等方法去探究、去親身感受知識的形成和發(fā)展過程。
二、在練習(xí)的過程中注意方法指導(dǎo),“轉(zhuǎn)化”思想的滲透。比如:當(dāng)學(xué)生利用連結(jié)對角線來解決實際問題后,老師應(yīng)該強調(diào),我們在解決四邊形問題時常用的方法是:“轉(zhuǎn)化”成三角形問題。
三、對于學(xué)生的練習(xí)情況要多用多媒體來展示,使說和寫有利地結(jié)合起來,培養(yǎng)學(xué)生論證推理的能力!
平行四邊形的性質(zhì)9
一、 教材分析(說教材):1、教材的地位和作用:
平行四邊形是在學(xué)習(xí)了平行線和三角形之后編排的,是平行線和三角形知識的應(yīng)用和深化。同時又是為了后面學(xué)習(xí)矩形、菱形、正方形、圓,甚至高中立體幾何打基礎(chǔ)的,起著承上啟下的橋梁作用。
平行四邊形在生產(chǎn)生活實踐中應(yīng)用也很廣泛,學(xué)習(xí)他可以把理論和實際聯(lián)系起來,更好地為實現(xiàn)科技現(xiàn)代化服務(wù)。
在前一章《三角形》的學(xué)習(xí)中,學(xué)生對幾何“證明”開始入門,通過本章的學(xué)習(xí)可以使學(xué)生的推理論證的能力得到進一步的鞏固和提高,對培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力也有一定的幫助。
為此,根據(jù)教學(xué)大綱的要求和編寫教材的意圖,結(jié)合學(xué)生認知規(guī)律和素質(zhì)教育的要求,確定本課的教學(xué)目標(biāo)和重、難點如下:
2、教學(xué)目標(biāo):
。1) 雙基目標(biāo):使學(xué)生掌握平行四邊形的概念和性質(zhì),理解平行線間距離,并會運用平行四邊形的性質(zhì)解決簡單的問題。
。2) 能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、猜想、歸納知識的自學(xué)能力和培養(yǎng)學(xué)生聯(lián)想、類比、轉(zhuǎn)化、推導(dǎo)、論證、演繹、抽象知識的數(shù)學(xué)思維品質(zhì)。
(3) 非智力目標(biāo)(思想目標(biāo)):滲透從具體到抽象,特殊到一般,未知到已知的數(shù)學(xué)思想以及事物之間互相轉(zhuǎn)化的辨證唯物主義觀點。
3、教學(xué)重點:理解并掌握平行四邊形的概念、性質(zhì)以及性質(zhì)的應(yīng)用。
4、教學(xué)難點:平行四邊形性質(zhì)的靈活應(yīng)用。
二、 教法(說教法):
“教學(xué)有法,教無定法,貴在得法”,行之有效的教法是取得良好教學(xué)效果的保證,按教學(xué)論中教為主導(dǎo),學(xué)為主體的原則,教師的任務(wù)是制定目標(biāo),組織教學(xué)活動,控制教學(xué)活動的進程,并隨機應(yīng)變、排除障礙,承認和尊重學(xué)生的主體地位。為了適應(yīng)素質(zhì)教育,培養(yǎng)學(xué)生的能力,本節(jié)課采用“五點”教學(xué)法。具體如下:
1、以“問題”為學(xué)生學(xué)習(xí)的“起點”;
2、以“范式”為學(xué)生學(xué)習(xí)的“焦點”;
3、以“變式”為學(xué)生學(xué)習(xí)的“重點”;
4、以“創(chuàng)新”為學(xué)生學(xué)習(xí)的“難點”;
5、以“評價”為學(xué)生學(xué)習(xí)的“疑點”;
三、 學(xué)法(說學(xué)法)
教學(xué)活動是教與學(xué)的雙邊相互促進的活動。在教學(xué)活動中,學(xué)生始終是學(xué)習(xí)的主體,為了激發(fā)學(xué)生自主學(xué)習(xí)科學(xué)的方法,真正做到課堂教學(xué)中面向全體學(xué)生,針對本課內(nèi)容和以上教法,采用的學(xué)法如下:
四、 教學(xué)程序(說過程)。
1、設(shè)問激趣,導(dǎo)入新課(起點):
首先復(fù)習(xí)四邊形的概念、明確四邊形的性質(zhì),然后用特殊化方法設(shè)計一問題:若四邊形的兩組對邊分別平行,則該四邊形是什么樣的四邊形?這樣導(dǎo)入新課的目的是使學(xué)生在已有的知識基礎(chǔ)上去探索數(shù)學(xué)發(fā)展的規(guī)律,達到用問題創(chuàng)設(shè)數(shù)學(xué)情境,提高學(xué)生學(xué)習(xí)興趣,并提高學(xué)生的發(fā)散思維能力,讓學(xué)生敢于探索和猜想。
2、誘導(dǎo)思維,以誘達思(焦點):
其次通過設(shè)問、質(zhì)疑,進一步引導(dǎo)學(xué)生區(qū)分平行四邊形與一般四邊形,進而猜想出平行四邊形的特殊性質(zhì)。同時教師整理出一種推導(dǎo)平行四邊形性質(zhì)的范式,再讓學(xué)生聯(lián)想范式,演繹其他推導(dǎo)模式,這樣做的目的是讓學(xué)生去 觀察、猜想出平行四邊形的性質(zhì),在教師的.范式的有誘導(dǎo)下,達到演繹數(shù)學(xué)論證過程的能力。
3、變式問題,突出“重點”:
通過具體問題的觀察、猜想、演繹出一些不同于一般四邊形的性質(zhì),進一步由學(xué)生歸納總結(jié)得到平行四邊形的性質(zhì)。通過投影不同層次的典型習(xí)題給不同層次的學(xué)生練習(xí),讓學(xué)生自己去掌握“重點”。
4、引導(dǎo)創(chuàng)新,化解“難點”:
設(shè)計“無圖形”和“無結(jié)論”問題,引導(dǎo)學(xué)生讀題、審題、畫圖、觀分析、猜想、歸納,然后把問題中所有可能的結(jié)論推導(dǎo)出來,通過這種開放式問題的解決,既達到突出“重點”,又化解“難點”的目的。
5、反饋補缺,消除“疑點”:
在學(xué)生自主探索學(xué)習(xí)的過程中,遇到自己無法解決的疑難問題時,教師做適當(dāng)?shù)脑u價和提示,以彌補學(xué)習(xí)不足之處,從而達到消除“難點”的目的。
6、總觀全課,找到收獲:
教師對此課學(xué)生的表現(xiàn)作一小結(jié)、評價,特別是對“兩頭”的學(xué)生予以表揚,告訴學(xué)生本節(jié)是本章及以后學(xué)習(xí)的基礎(chǔ),要求他們在以后學(xué)習(xí)中會用平行四邊形的性質(zhì)去解決實際問題。
7、布置做業(yè):
有針對地布置少量重、難、疑點知識的家庭作業(yè),可以把“單一性結(jié)論”問題改為“無結(jié)論”問題,以鞏固知識。
平行四邊形的性質(zhì)10
【學(xué)習(xí)目標(biāo)】
1、平行四邊形性質(zhì)(對角線互相平分)
2、平行線之間的距離定義及性質(zhì)
【新課探究】
活動一:
如圖,□ABCD的兩條對角線AC、BD相交于點O.
(1)圖中有哪些三角形是全等的?有哪些線段是相等的?
(2)想辦法驗證你的猜想?
(3)平行四邊形的性質(zhì):平行四邊形的對角線
幾何語言:∵四邊形ABCD是平行四邊形(已知)
∴AO==AC,BO==BD()
活動二:如圖,直線∥,過直線上任意兩點A,B分別向直線做垂線,交直線與點C,點D.
(1)線段AC,BD有怎樣的位置關(guān)系?
(2)比較線段AC,BD的長短.
(3)若兩條直線互相平行,,則其中一條直線上任意一點到另一條直線的距離,這個距離稱為平行線之間的距離。平行線之間的垂線段處處.
【知識應(yīng)用】
1.已知□ABCD的兩條對角線相交于點O,OA=5,OB=6,則AC=,BD=
2.如圖,四邊形ABCD是平行四邊形,DB⊥AD,求BC,CD及OB,OA的長.
3.已知□ABCD中,AB=12,BC=6,對邊AD和BC的距離是4,則對邊AB和CD間的距離是
【當(dāng)堂反饋(小測)】:
1、平行四邊形ABCD的兩條對角線相交于O,OA,OB,AB的長度分別為3cm、4cm、5cm,求其它各邊以及兩條對角線的長度。
2、如圖,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的`長
3、如圖,在□ABCD中,已知AB、BC、CD三條邊的長度分別為(x+3)cm,(x-4)cm,16cm,這個平行四邊形的周長是多少?
【鞏固提升】
1.平行四邊形的兩條對角線
2、已知□ABCD的兩條對角線相交于點O,OA=5,OB=6,則AC=,BD=
3、已知□ABCD中,AB=8,BC=6,對邊AD和BC的距離是2,則對邊AB和CD間的距離是
4、下列性質(zhì)中,平行四邊形不一定具備的是()
A、對角互補B、鄰角互補C、對角相等D、內(nèi)角和是360°
5、下列說法中,不正確的是()
A、平行四邊形的對角線相等B、平行四邊形的對邊相等
C、平行四邊形的對角線互相平分D、平行四邊形的對角相等
6、如圖,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的長
7、如圖,已知□ABCD中,對角線AC與BD相交于點O,△AOD的周長是80cm,已知AD的長是35cm,求AC+BD的長。
8、如圖,平行四邊形ABCD中,AE⊥BD,CF⊥BD,垂足分別為E、F。
(1)寫出圖中每一對你認為全等的三角形;
(2)選擇(1)中的任意一對進行證明。
9.對角線可以將平行四邊形分成全等的兩部分,這樣的直線還有很多。
(1)多做幾條這樣的直線,看看它們有什么共同的特征
(2)試著用旋轉(zhuǎn)的有關(guān)知識解釋你的發(fā)現(xiàn)。