初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃三篇
時(shí)間流逝得如此之快,又將迎來新的工作,新的挑戰(zhàn),是時(shí)候?qū)懸环菰敿?xì)的計(jì)劃了。相信許多人會(huì)覺得計(jì)劃很難寫?以下是小編為大家收集的初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃3篇,歡迎閱讀,希望大家能夠喜歡。
初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃 篇1
一、學(xué)生知識(shí)狀況分析
學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開方求一個(gè)正數(shù)的兩個(gè)平方根,并且也學(xué)習(xí)了完全平方公式。在本章前面幾節(jié)課中,又學(xué)習(xí)了一元二次方程的概念,并經(jīng)歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了用計(jì)算器估算一元二次方程解的過程,解決了一些簡單的現(xiàn)實(shí)問題,感受到解一元二次方程的必要性和作用,基于學(xué)生的學(xué)習(xí)心理規(guī)律,在學(xué)習(xí)了估算法求解一元二次方程的基礎(chǔ)上,學(xué)生自然會(huì)產(chǎn)生用簡單方法求其解的欲望;同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。
二、教學(xué)任務(wù)分析
教科書基于學(xué)生用估算的方法求解一元二次方程的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):用配方法解二次項(xiàng)系數(shù)為1且一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程。但這僅僅是這堂課具體的教學(xué)目標(biāo),或者說是一個(gè)近期目標(biāo)。而數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實(shí)質(zhì)性聯(lián)系。本課《配方法》內(nèi)容從屬于“方程與不等式”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因而務(wù)必服務(wù)于方程教學(xué)的遠(yuǎn)期目標(biāo):“讓學(xué)生經(jīng)歷由具體問題抽象出方程的過程,體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,并在解一元二次方程的過程中體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想”,同時(shí)也應(yīng)力圖在學(xué)習(xí)中逐步達(dá)成學(xué)生的有關(guān)情感態(tài)度目標(biāo)。為此,本節(jié)課的教學(xué)目標(biāo)是:
1、會(huì)用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會(huì)用配方法解二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程;
2、經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力;
3、體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想方法;
4、能根據(jù)具體問題中的實(shí)際意義檢驗(yàn)結(jié)果的合理性。
三、教學(xué)過程分析
本節(jié)課設(shè)計(jì)了五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)回顧;第二環(huán)節(jié):情境引入;第三環(huán)節(jié):講授新課;第四環(huán)節(jié):練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):復(fù)習(xí)回顧
活動(dòng)內(nèi)容:1、如果一個(gè)數(shù)的平方等于4,則這個(gè)數(shù)是 ,若一個(gè)數(shù)的平方等于7,則這個(gè)數(shù)是 。一個(gè)正數(shù)有幾個(gè)平方根,它們具有怎樣的關(guān)系?
2、用字母表示完全平方公式。
3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?
活動(dòng)目的:以問題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過前兩個(gè)問題,引導(dǎo)學(xué)生復(fù)習(xí)開平方和完全平方公式,通過后一個(gè)問題的回答讓學(xué)生進(jìn)一步體會(huì)用估計(jì)法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。
實(shí)際效果:第1和第2問選兩三個(gè)學(xué)生口答,由于問題較簡單,學(xué)生很快回答出來。第3問由學(xué)生獨(dú)立練習(xí),通過練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時(shí)又進(jìn)一步體會(huì)到了估算法較麻煩,達(dá)到了激發(fā)學(xué)生探索新解法的目的。
第二環(huán)節(jié):情境引入
活動(dòng)內(nèi)容:(1)工人師傅想在一塊足夠大的長方形鐵皮上裁出一個(gè)面積為100CM2正方形,請你幫他想一想,這個(gè)正方形的邊長應(yīng)為 ;若它的面積為75CM2,則其邊長應(yīng)為 。(選1個(gè)同學(xué)口答)
(2)如果一個(gè)正方形的邊長增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長為 。若變化后的面積為48cm2呢?(小組合作交流)
(3)你會(huì)解下列一元二次方程嗎?(獨(dú)立練習(xí))
x2?5; (x?2)2?5; x2?12x?36?0。
(4)上節(jié)課,我們研究梯子底端滑動(dòng)的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個(gè)方程的解題過程,求出x的精確解嗎?你認(rèn)為用這種方法解這個(gè)方程的困難在哪里?(合作交流)
活動(dòng)目的:利用實(shí)際問題,讓學(xué)生初步體會(huì)開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識(shí)。
實(shí)際效果:在復(fù)習(xí)了開方的基礎(chǔ)上,學(xué)生很快口答出了第1問,為解決第二問做好了準(zhǔn)備。第2問讓學(xué)生合作解決,學(xué)生在交流如何求原來正方形的邊長時(shí),產(chǎn)生了不同的方法,有的學(xué)生直接開方先求出了新正方形的邊,再減增加的邊長,求出原來的正方形的邊長;有的同學(xué)用了方程,設(shè)原正方形的邊長為xcm,根據(jù)題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據(jù)實(shí)際情況求出了原來正方形的邊長,這樣,再一次經(jīng)歷了用一元二次方程解決實(shí)際問題的過程,并初步了解了開方法在一元二次方程中的簡單應(yīng)用。在第2問的基礎(chǔ)上,學(xué)生很快解決了第3問。但學(xué)生在解決第4問時(shí)遇到了困難,他們發(fā)現(xiàn)等號(hào)的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同學(xué)認(rèn)為這個(gè)方程不能用開方法解,那么如何解決這樣的方程問題呢?這就是我們本節(jié)課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。
第三環(huán)節(jié):講授新課
活動(dòng)內(nèi)容1:做一做:(填空配成完全平方式,體會(huì)如何配方)
填上適當(dāng)?shù)臄?shù),使下列等式成立。(選4個(gè)學(xué)生口答)
x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2
x2?8x?____?(x?___)2 x2?4x?____?(x?___)2
問題:上面等式的左邊常數(shù)項(xiàng)和一次項(xiàng)系數(shù)有什么關(guān)系?對(duì)于形如x2?ax的式子如何配成完全平方式?(小組合作交流)
活動(dòng)目的:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個(gè)填空題,使學(xué)生能夠用語言敘述并充分理解左邊填的是“一次項(xiàng)系數(shù)一半的平方”,右邊填的是“一次項(xiàng)系數(shù)的一半”,進(jìn)一步復(fù)習(xí)鞏固完全平方式中常數(shù)項(xiàng)與一次項(xiàng)系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準(zhǔn)備。
實(shí)際效果:由于在復(fù)習(xí)回顧時(shí)已經(jīng)復(fù)習(xí)過完全平方式,所以大部分學(xué)生很快解決四個(gè)小填空題。通過小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如x2?ax的式子a如何配成完全平方式,只要加上一次項(xiàng)系數(shù)一半的平方即加上()2即可。而2
且講解中小組之間互相補(bǔ)充、互相競爭,氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實(shí)上,通過對(duì)配方的感知的過程,學(xué)生都能用自己的語言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺行為中得到培養(yǎng)的,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價(jià)值觀。 活動(dòng)內(nèi)容2:解決例題
(1)解方程:x2+8x-9=0.(師生共同解決)
解:可以把常數(shù)項(xiàng)移到方程的右邊,得
x2+8x=9
兩邊都加上(一次項(xiàng)系數(shù)8的一半的平方),得
x2+8x+42=9+42.
(x+4)2=25
開平方,得 x+4=±5,
即 x+4=5,或x+4=-5.
所以 x1=1, x2=-9.
(2)解決梯子底部滑動(dòng)問題:x2?12x?15?0(仿照例1,學(xué)生獨(dú)立解決) 解:移項(xiàng)得 x2+12x=15,
兩邊同時(shí)加上62得,x2+12x+62=15+36,即(x+6)2=51
兩邊開平方,得x+6=±51 所以:x1??6,x2??51?6,但因?yàn)閤表示梯子底部滑動(dòng)的距離所以x2??51?6 不合題意舍去。 答:梯子底部滑動(dòng)了(51?6)米。
活動(dòng)內(nèi)容3:及時(shí)小結(jié)、整理思路
用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)
活動(dòng)目的:通過對(duì)例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時(shí)通過例2提醒學(xué)生注意:有的方程雖然有兩個(gè)不同的解,但在處理實(shí)際問題時(shí)要根據(jù)實(shí)際意義檢驗(yàn)結(jié)果的合理性,對(duì)結(jié)果進(jìn)行取舍。由于此問題在情境引入時(shí)出現(xiàn)過,因此也達(dá)到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。
實(shí)際效果:學(xué)生經(jīng)過前一環(huán)節(jié)對(duì)配方法的特點(diǎn)有了初步的認(rèn)識(shí),通過兩個(gè)例題的處理,進(jìn)一步完善對(duì)配方法基本思路的把握,是對(duì)配方法的學(xué)習(xí)由探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個(gè)問題,通過小組的合作交流得出配方法的基本思路和解決問題的關(guān)鍵,結(jié)論的得出來源于學(xué)生在實(shí)例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動(dòng)性。
活動(dòng)內(nèi)容4、應(yīng)用提高
例3:如圖,在一塊長和寬分別是16米和12米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨(dú)立思考,再小組合作交流)
活動(dòng)目的:在前兩個(gè)例題的基礎(chǔ)上,通過例3進(jìn)一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實(shí)際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。實(shí)際效果:大部分學(xué)生通過獨(dú)立思考,結(jié)合圖形很快列出了方程,在交流過程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認(rèn)為,如果設(shè)水渠的寬為x米,則1?12?16;有的同學(xué)認(rèn)為如果設(shè)水渠的寬為x21米,則方程應(yīng)該是16?12?12x?16x?x2??12?16,并且給出了合理的解2方程應(yīng)該是(16?x)(12?x)?
釋;有的'同學(xué)則認(rèn)為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對(duì)這些問題,組織學(xué)生解他們2所列出的幾個(gè)方程,然后再讓小組成員合作交流討論,通過討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個(gè)較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時(shí)最簡單。這樣通過學(xué)生之間的爭論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,達(dá)到了資源共享。
第四環(huán)節(jié):練習(xí)與提高
活動(dòng)內(nèi)容:解下列方程
(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9
活動(dòng)目的:對(duì)本節(jié)知識(shí)進(jìn)行鞏固練習(xí)。
實(shí)際效果:此處留給學(xué)生充分的時(shí)間與空間進(jìn)行獨(dú)立練習(xí),通過練習(xí),學(xué)生基本都能用配方法解解二次項(xiàng)系數(shù)為1、一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對(duì)“用配方法解簡單一元二次方程”的理解。
第五環(huán)節(jié):課堂小結(jié)
活動(dòng)內(nèi)容:師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時(shí)應(yīng)注意的問題。
活動(dòng)目的:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵(lì))。
實(shí)際效果:學(xué)生暢所欲言談自己的切身感受與實(shí)際收獲,掌握了配方法的基本思路和過程。
第六環(huán)節(jié):布置作業(yè)
課本50頁習(xí)題2.3 1題、2題
四、教學(xué)反思
1、 創(chuàng)造性地使用教材
教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行適當(dāng)調(diào)整。學(xué)生在初一、初二已經(jīng)學(xué)過完全平方公式和如何對(duì)一個(gè)正數(shù)進(jìn)行開方運(yùn)算,而且普遍掌握較好,所以本節(jié)課從這兩個(gè)方面入手,利用幾個(gè)簡單的實(shí)際問題逐步引入配方法。教學(xué)中將難點(diǎn)放在探索如何配方上,重點(diǎn)放在配方法的應(yīng)用上。本節(jié)課老師安排了三個(gè)例題,通過前兩個(gè)例題規(guī)范用配方法解一元二次方程的過程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時(shí)本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個(gè)是設(shè)計(jì)方案問題改編成一個(gè)實(shí)際應(yīng)用問題,讓學(xué)生體會(huì)到了方程在實(shí)際問題中的應(yīng)用,感受到了數(shù)學(xué)的實(shí)際價(jià)值。培養(yǎng)了學(xué)生分析問題,解決問題的能力。
2、 相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)
課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。本節(jié)課多次組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時(shí)出現(xiàn)的獨(dú)到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。
3、注意改進(jìn)的方面
在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對(duì)小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識(shí)的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問題及對(duì)困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實(shí)效性。
初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃 篇2
教學(xué)目標(biāo):
1.知識(shí)與技能:
(1)能證明等腰梯形的性質(zhì)和判定定理
(2)會(huì)利用這些定理計(jì)算和證明一些數(shù)學(xué)問題
2.過程與方法:
通過證明等腰梯形的性質(zhì)和判定定理,體會(huì)數(shù)學(xué)中轉(zhuǎn)化思想方法的應(yīng)用。
3.情感態(tài)度與價(jià)值觀:
通過定理的證明,體會(huì)證明方法的多樣化,從而提高學(xué)生解決幾何問題的能力。
重點(diǎn)、難點(diǎn):
重點(diǎn):等腰梯形的性質(zhì)和判定
難點(diǎn):如何應(yīng)用等腰梯形的性質(zhì)和判定解決具體問題。
教學(xué)過程
(一)知識(shí)梳理:
知識(shí)點(diǎn)1:等腰梯形的.性質(zhì)1
(1)文字語言:等腰梯形同一底上的兩底角相等。
(2)數(shù)學(xué)語言:
在梯形ABCD中
∵AD∥BC,AB=CD
∴∠B=∠C
∠A=∠D(等腰梯形同一底上的兩個(gè)底角相等)
(3)本定理的作用:在梯形中常用的添加輔助線——平移腰,可以把梯形化歸為一個(gè)平行四邊形和一個(gè)等腰三角形;從而利用平行四邊形及等腰三角形的有關(guān)性質(zhì)解決有關(guān)問題。
知識(shí)點(diǎn)2:等腰梯形的性質(zhì)2
(1)文字語言:等腰梯形的兩條對(duì)角線相等
(2)數(shù)學(xué)語言:
在梯形ABCD中
∵AD∥BC,AB=DC
∴AC=BD(等腰梯形對(duì)角線相等)
(3)本定理的作用:利用等腰梯形的性質(zhì)證明線段相等,以及平移其中一條對(duì)角線化梯形為一個(gè)平行四邊形和一個(gè)等腰三角形從而解決有關(guān)線段的相等和垂直。
知識(shí)點(diǎn)3:等腰梯形的判定
(1)文字語言:在同一底上的兩個(gè)角相等的梯形是等腰梯形。
(2)數(shù)學(xué)語言:在梯形ABCD中∵∠B=∠C
∴梯形ABCD是等腰梯形(同底上的兩個(gè)角相等的梯形是等腰梯形)
(3)本定理的作用:在梯形中常用添加輔助線——補(bǔ)全三角形把原來的梯形化為兩個(gè)三角形
(4)說明:
、倥卸ㄒ粋(gè)梯形是等腰梯形通常有兩種方法:定義法和定理法。
、谂卸ㄒ粋(gè)梯形是等腰梯形一般步驟:先判定四邊形是梯形,然后再判定“兩腰相等”或“同一底上的兩個(gè)角相等”來判定它是等腰梯形。
【典型例題】
例1. 我們在研究等腰梯形時(shí),常常通過作輔助線將等腰梯形轉(zhuǎn)化為三角形,然后用三角形的知識(shí)來解決等腰梯形的問題。
(1)在下面4個(gè)等腰梯形中,分別作出常用的4種輔助線(作圖工具不限)
(2)在(1)的條件下,若AC⊥BD,DE⊥BC于點(diǎn)E,試確定線段DE與AD,BC之間的數(shù)量關(guān)系。并證明你的結(jié)論。
解:(1)略。
(2)DE=(AD+BC)
過D作DF∥AC交BC延長線于點(diǎn)F
∵AD∥BC,∴四邊形ACFD是平行四邊形
∴AD=CF, AC=DF
∵AC=BD
∴BD=DF
又∵AC⊥BD,∴BD⊥DF即△BDF為等腰直角三角形
∵DE⊥BF,則DE=BF,
∴DE=(BC+CF)=(BC+AD)
例2. 如圖,鐵路路基橫斷面為等腰梯形ABCD,已知路基AB長6m, 斜坡BC與下底CD的夾角為60°,路基高AE為,求下底CD的寬。
解:過點(diǎn)B作BF⊥CD于F
∵四邊形ABCD是等腰梯形
∴BC=AD
∵BF=AE,BF⊥CD,AE⊥CD
∵Rt△BCF≌Rt△ADE
在Rt△BCF中,∠C=60°
∴∠CBF=30°
∴CF=BC即BC=2CF
∴BC2=CF2+BF2
即∴CF=2
∵AB∥CD,BF⊥CD,AE⊥CD
∴四邊形ABFE是矩形
∴EF=AB=6m
∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)
例3. 已知如圖,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延長線相交于G,CE⊥AG于E,CF⊥AB于F
(1)請寫出圖中4組相等的線段。(已知的相等線段除外)
(2)選擇(1)中你所寫的一組相等線段,說說它們相等的理由。
解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG
(2)證明AG=BG,因?yàn)樵谔菪蜛BCD中,
AB∥DC,AD=BC,所以梯形ABCD為等腰梯形
∴∠GAB=∠GBA
∴AG=BG
課堂小結(jié):
本節(jié)課的學(xué)習(xí)要注意轉(zhuǎn)化的思想方法,有關(guān)等腰梯形的問題往往通過作輔助線將其轉(zhuǎn)化為更特殊的四邊形和三角形,常見辦法是平移腰,延長腰,作高分割,平移對(duì)角線等方法。
初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃 篇3
學(xué)習(xí)目標(biāo)
1、進(jìn)一步認(rèn)識(shí)建立方程模型的作用,提高數(shù)學(xué)的應(yīng)用意識(shí)
2、在用方程解決實(shí)際問題的過程中,提高抽象、概括、分析問題的能力
學(xué)習(xí)重、難點(diǎn)
重點(diǎn):用一元二次方程解決實(shí)際問題
難點(diǎn):正確尋找等量關(guān)系
學(xué)習(xí)過程:
一、情境創(chuàng)設(shè)
一根長22cm的鐵絲。
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32 cm2的矩形?并說明理由。
二、探索活動(dòng)
分析情境問題可知:如果設(shè)這根鐵絲圍成的矩形的長是xcm,那么矩形的寬是
____________。根據(jù)相等關(guān)系:矩形的長×矩形的寬=矩形的面積,可以列出方程求解。
思考:這根鐵絲圍成的矩形中,面積最大是多少?
三、例題教學(xué)
例 1 如圖,在矩形ABCD中,AB=6,BC=12,點(diǎn)P從
點(diǎn)A沿AB向點(diǎn)B 以1/s的速度移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B沿邊BC
向點(diǎn)C以2/s的速度移動(dòng),問幾秒后△PBQ的面積等于82?
分析:題中含有等量關(guān)系:S△PBQ =82,只要用點(diǎn)P運(yùn)動(dòng)的時(shí)間
來表示三角形各邊的長并代入等量關(guān)系式即可得到相應(yīng)的方程。
例 2 如圖,在矩形ABCD中,AB=6cm,
BC=3cm。點(diǎn)P沿邊AB從點(diǎn)A開始向點(diǎn)B以2cm/s
的速度移動(dòng),點(diǎn)Q沿邊DA從點(diǎn)D開始向點(diǎn)A以1cm/s
的速度移動(dòng)。如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的`時(shí)間(0≤t≤3)那么,當(dāng)t為何值時(shí),△QAP的面積等于2cm2?
四、課堂練習(xí)
1、P98 練習(xí)
2、思維拓展:
如圖,有100m長的籬笆材料,要圍成一矩形倉庫,
要求面積不小于600m2,在場地的北面有一堵50m的舊墻,
有人用這個(gè)籬笆圍成一個(gè)長40m,寬10m的倉庫,但面積
只有40×10m2,不合要求,問應(yīng)如何設(shè)計(jì)矩形的長與寬才能符合要求呢?
五、課堂小結(jié)
如何正確尋找實(shí)際問題中的等量關(guān)系?
六、作業(yè)
后進(jìn)生:P98 練習(xí) P99 習(xí)題4.3 6 優(yōu)生:P99 習(xí)題4.3 6、7、8
【初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃】相關(guān)文章:
初三數(shù)學(xué)上冊教學(xué)工作計(jì)劃03-07
初三數(shù)學(xué)上冊教學(xué)工作計(jì)劃08-24
初三數(shù)學(xué)上冊教學(xué)計(jì)劃04-04
初三數(shù)學(xué)上冊教學(xué)計(jì)劃04-04
初三上冊的數(shù)學(xué)教學(xué)計(jì)劃10-15
初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃6篇08-30
初三上冊數(shù)學(xué)教學(xué)工作計(jì)劃八篇09-04