- 相關推薦
培養(yǎng)整體意識 做好考研線代復習
復習線性代數(shù)要注重知識點的銜接與轉換。由于線性代數(shù)各個部分之間的聯(lián)系非常緊密,而且歷年來的考題大多都涉及到幾個部分的內容,所以復習線性代數(shù)一定要有一個整體意識。行列式和矩陣是基礎知識,還有向量、方程組、特征值等一直是考點。復習要注意以下幾點。一、注重對基本概念的理解與把握,正確熟練運用基本方法及基本運算。
線性代數(shù)的概念很多,重要的有:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(矩陣、向量組),線性組合與線性表出,線性相關與線性無關,極大線性無關組,基礎解系與通解,解的結構與解空間,特征值與特征向量,相似與相似對角化,二次型的標準形與規(guī)范形,正定,合同變換與合同矩陣。
線性代數(shù)中運算法則多,應整理清楚不要混淆,基本運算與基本方法要過關,重要的有:行列式(數(shù)字型、字母型)的計算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無關組,線性相關的判定或求參數(shù),求基礎解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項式基礎解系法),判斷與求相似對角矩陣,用正交變換化實對稱矩陣為對角矩陣(亦即用正交變換化二次型為標準形)。
二、注重知識點的銜接與轉換,知識要成網,努力提高綜合分析能力。
線性代數(shù)從內容上看縱橫交錯,前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,復習時應當常問自己做得對不對?再問做得好不好?只有不斷地歸納總結,努力搞清內在聯(lián)系,使所學知識融會貫通,接口與切入點多了,熟悉了,思路自然就開闊了。
例如:設A是m×n矩陣,B是n×s矩陣,且AB=0,那么用分塊矩陣可知B的列向量都是齊次方程組Ax=0的解,再根據(jù)基礎解系的理論以及矩陣的秩與向量組秩的關系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,進而可求矩陣A或B中的一些參數(shù)。
凡此種種,正是因為線性代數(shù)各知識點之間有著千絲萬縷的聯(lián)系,代數(shù)題的綜合性與靈活性就較大,大家整理時要注重串聯(lián)、銜接與轉換。
三、注重邏輯性與敘述表述
線性代數(shù)對于抽象性與邏輯性有較高的要求,通過證明題可以了解考生對數(shù)學主要原理、定理的理解與掌握程度,考查考生的抽象思維能力、邏輯推理能力。大家復習整理時,應當搞清公式、定理成立的條件,不能張冠李戴,同時還應注意語言的敘述表達應準確、簡明。
應該說考研數(shù)學最簡單的部分就是線性代數(shù),這部分的難點就在于概念非常多而且相互聯(lián)系,但線代貫穿的主線就是求方程組的解,只要將方程組的解的概念和一般方法理解透徹,再回過頭看前面的內容就非常簡單。同時從考試內容來看,考的內容基本類似,可以說是最死的部分,這幾年出的考試題實際上就是以前考題的翻版,仔細專研一下以前考題對大家是最有好處的。
◇ 中國大學網 http://www.msguai.com 考研
【培養(yǎng)整體意識 做好考研線代復習】相關文章:
幼兒服務意識的培養(yǎng)09-12
考研政治復習02-08
如何從小培養(yǎng)孩子的勤儉意識?02-03
內部控制意識及管理水平上的整體成效07-25
考研復習計劃02-27
關于考研復習心得12-28
考研英語復習心得11-04
幼兒環(huán)保意識工作方案 培養(yǎng)幼兒環(huán)保意識教案12-27
培養(yǎng)學生的公民意識交流材料03-07