- 相關推薦
2012考研線性代數(shù)特點及備考攻略
在考研數(shù)學考試科目中,高數(shù)、概率統(tǒng)計、線代每門都有自己的特點,相應的復習策略也有不同。線性代數(shù)的公式概念結論尤其多,而且很多概念和性質之間的聯(lián)系也多,做題時,如果一個公式或者結論不知道,后面的過程就無法做下去,特別是每年線性代數(shù)的兩道大題考試內容。線代不但對基礎知識要求嚴格,對于同學們的抽象與推理能力也有要求。首先,基礎過關。
線代概念很多,重要的有代數(shù)余子式、伴隨矩陣、逆矩陣、初等變換與初等矩陣、正交變換與正交矩陣、秩(矩陣、向量組、二次型)、等價(矩陣、向量組)、線性組合與線性表出、線性相關與線性無關、極大線性無關組、基礎解系與通解、解的結構與解空間、特征值與特征向量、相似與相似對角化、二次型的標準形與規(guī)范形、正定、合同變換與合同矩陣。而運算法則也有很多必須掌握:行列式(數(shù)字型、字母型)的計算、求逆矩陣、求矩陣的秩、求方陣的冪、求向量組的秩與極大線性無關組、線性相關的判定或求參數(shù)、求基礎解系、求非齊次線性方程組的通解、求特征值與特征向量(定義法,特征多項式基礎解系法)、判斷與求相似對角矩陣、用正交變換化實對稱矩陣為對角矩陣(亦即用正交變換化二次型為標準形)。
第二,加強抽象及推理能力。
線性代數(shù)對于同學們的抽象與邏輯能力有較高的要求,大綱要求主要考查的有抽象行列式的計算,抽象矩陣求逆,抽象矩陣求秩,抽象行列式求特征值與特征向量,這四種抽象題型也是考研線性代數(shù)每年常出的題型,占有很大的比重。再說推理,可以這樣說,線性代數(shù)是跳躍性的推理過程,在做題時表現(xiàn)的會很明顯。同學們在做高等數(shù)學的題時,從第一步到第二步到第三步在數(shù)學式子上一個一個等下去很清晰,但是同學們在做線性代數(shù)的題目時從第一步到第二步到第三步經(jīng)常在數(shù)學式子上看不出來,比如行列式的計算,從第幾行(或列)加到哪行(列)很多時候很難一下子看出來。這都需要同學們不但基礎知識掌握牢靠,還要鍛煉自己的抽象及推理能力。
第三,綜合提升。
線性代數(shù)從內容上看前后聯(lián)系緊密,相互滲透,因此解題方法靈活多變,復習時應當常問自己做得對不對?再問做得好不好?只有不斷地歸納總結,努力搞清內在聯(lián)系,使所學知識融會貫通,接口與切入點多了,熟悉了,思路自然開闊。例如:設A是m×n矩陣,B是n×s矩陣,且AB=0,那么用分塊矩陣可知B的列向量都是齊次方程組Ax=0的解,再根據(jù)基礎解系的理論以及矩陣的秩與向量組秩的關系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,進而可求矩陣A或B中的一些參數(shù)。以上舉例,正是因為線代各知識點之間有著千絲萬縷的聯(lián)系,代數(shù)題的綜合性與靈活性較大,同學們復習時要注重串聯(lián)、銜接與轉換,才能綜合提升。
www.msguai.com 中國大學網(wǎng)考研頻道【考研線性代數(shù)特點及備考攻略】相關文章:
2023考研英語備考寫作復習攻略03-29
考研攻略09-16
考研備考心得02-23
考研數(shù)學線性代數(shù)主要考點及難點07-10
考研備考經(jīng)驗與心得03-15
考研英語基礎復習攻略02-27
考研數(shù)學備考中的常見問題12-04
考研備考經(jīng)驗與心得體會11-25
針對考研英語大綱復習攻略參考11-17