亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

怎么證明余弦定理

時間:2023-04-29 18:49:53 證明范文 我要投稿
  • 相關(guān)推薦

怎么證明余弦定理

怎么證明余弦定理

證明余弦定理:

怎么證明余弦定理

因為過C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。

又因為b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,

所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,

所以c^2-2cbcosA+b^2=a^2,

所以c^2+b^2-a^2=2cbcosA,

所以cosA=(c^2+b^2-a^2)/2bc

同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab

2

在任意△ABC中, 作AD⊥BC.

∠C對邊為c,∠B對邊為b,∠A對邊為a -->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC=AD+DC

b=(sinB*c)+(a-cosB*c)

b=sinB*c+a+cosB*c-2ac*cosB

b=(sinB+cosB)*c-2ac*cosB+a

b=c+a-2ac*cosB

所以,cosB=(c+a-b)/2ac

2

如右圖,在ABC中,三內(nèi)角A、B、C所對的邊分別是a、b、c . 以A為原點,AC所在的直線為x軸建立直角坐標(biāo)系,于是C點坐標(biāo)是(b,0),由三角函數(shù)的定義得B點坐標(biāo)是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 現(xiàn)將CB平移到起點為原點A,則AD = CB . 而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根據(jù)三角函數(shù)的定義知D點坐標(biāo)是 (acos(π-C),asin(π-C)) 即 D點坐標(biāo)是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得 asinA = csinC ,同理可證 asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可證 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應(yīng)用余弦定理證明:

mb=(1/2)[(√2(a^2+c^2)-b^2)]

mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

4

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

證畢。

【怎么證明余弦定理】相關(guān)文章:

垂心余弦定理證明04-28

余弦定理的證明方法04-28

余弦定理教案04-25

余弦定理教案01-11

單位證明范文怎么寫_證明06-26

“余弦定理”教學(xué)設(shè)計05-01

離職證明怎么寫06-26

困難證明怎么寫01-14

資產(chǎn)證明怎么寫04-28

工資證明怎么寫?02-03